Deep Learning Techniques for Music Generation (4)

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université – CNRS

Programa de Pós-Graduação em Informática (PPGI)

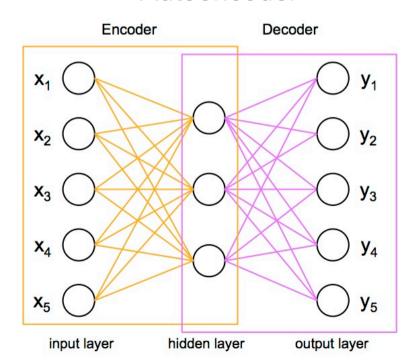
UNIRIO

Autoencoder

#1 Limitation – Generation (Without or With Minimal Input)

- #1 Partial Solution
- Via Decoding (Autoencoder)
 - » Ex: DeepHear [Sun, 201X]

Autoencoder



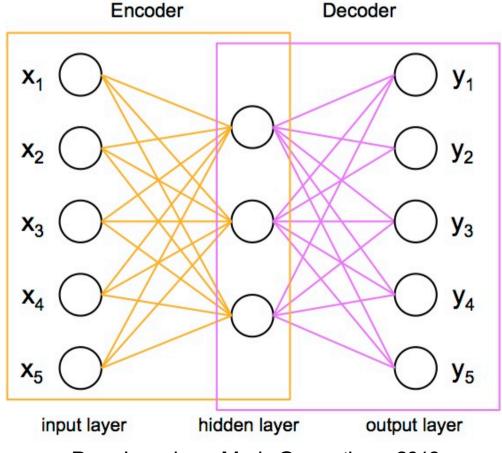
Neural Network with Input Layer = Output Layer

Diabolo shape

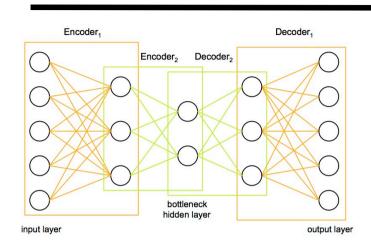
- Self-Supervised Training
 - Output = Input
 - Learning Identity
 - Learns to compress and reconstruct data
 - Extracts significant/discriminating features

Autoencoder

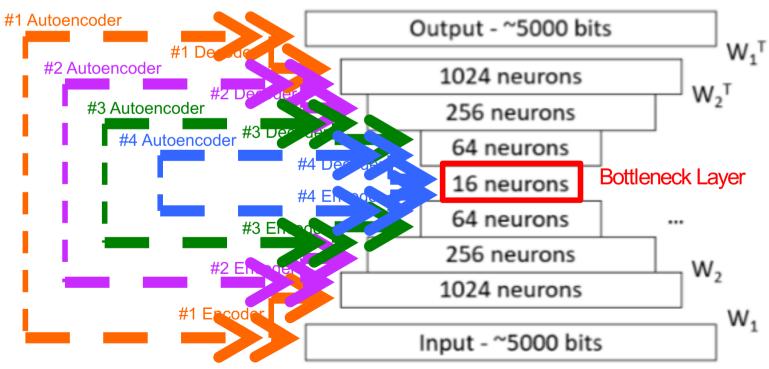
- Symmetric Neural Network
- Trained with examples as input and output
- Hidden Layer will Learn a Compressed Representation at the Hidden Layer (Latent Variables)



#1 Limitation – Generation – #1 Partial Solution – Stacked Autoencoders



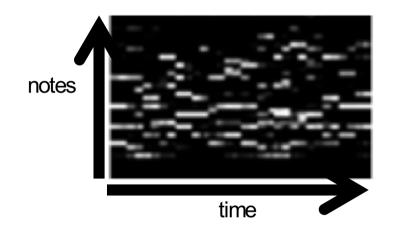
DeepHear Architecture [Sun, 2016]



Ex1: DeepHear [Sun, 2016]

1. Pre-Training in Cascade (Layer by Layer)

- Dataset: 600 Ragtimes (Scott Joplin)
- Representation: Pianoroll



2. Self-Supervised Training

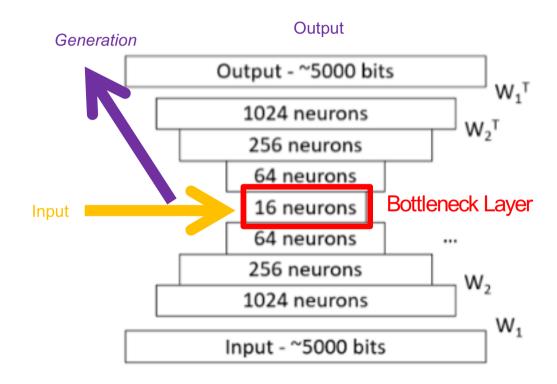
- Learns to compress and reconstruct data
- Extracts Features
- Bottleneck Layer = 16 neurons



DeepHear

3. Generation

- Input Random Data into 16 Neurons Middle Layer
- Melody: Output of the Higher Layer Decoder



https://fephsun.github.io/2015/09/01/neural-music.html

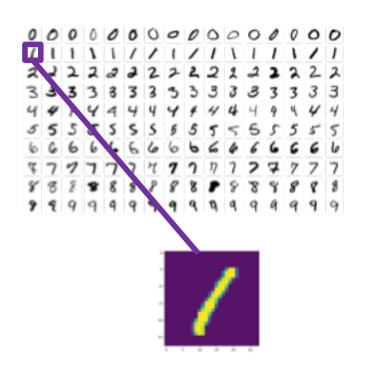
AutoBach

random.uniform(-1, 1)

random.uniform(-10, 10)

random.uniform(-1, 1)

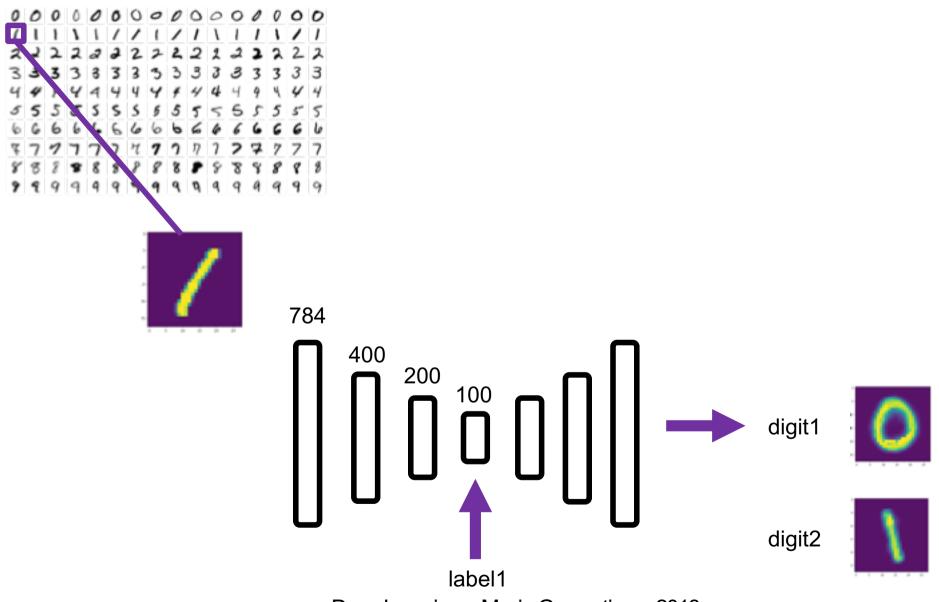
Autoencoder MNIST (Handwritten Digits)



```
label1 = []
          for i in range(hidden_layer_size):
                     label1.append(random.uniform(-1, 1))
          digit1 = decoder.predict(np.array([label1]))[0]
          digit1 = digit1.reshape(28, 28)
          fig, ax = plt.subplots()
          im = ax.imshow(digit1)
          plt.show()
784
                               digit1
                               digit2
```

label1

Autoencoder MNIST (Handwritten Digits)

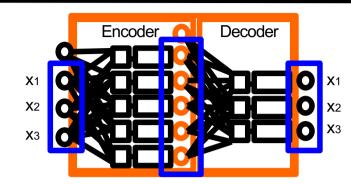


Other Example – Creating Non-Digits

New Types Generation [Kazakçi et al., 2016]

1. Create a Sparse Autoencoder

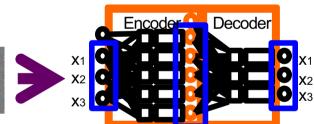
Convolutional Autoencoder
 (3 Encoding Layers; 1 Decoding Layer)



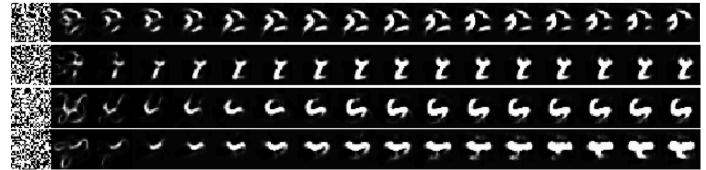
2. Train it on Objects Dataset

Hand Written Digits: MNIST dataset [Lecun & Cortes, 2012]

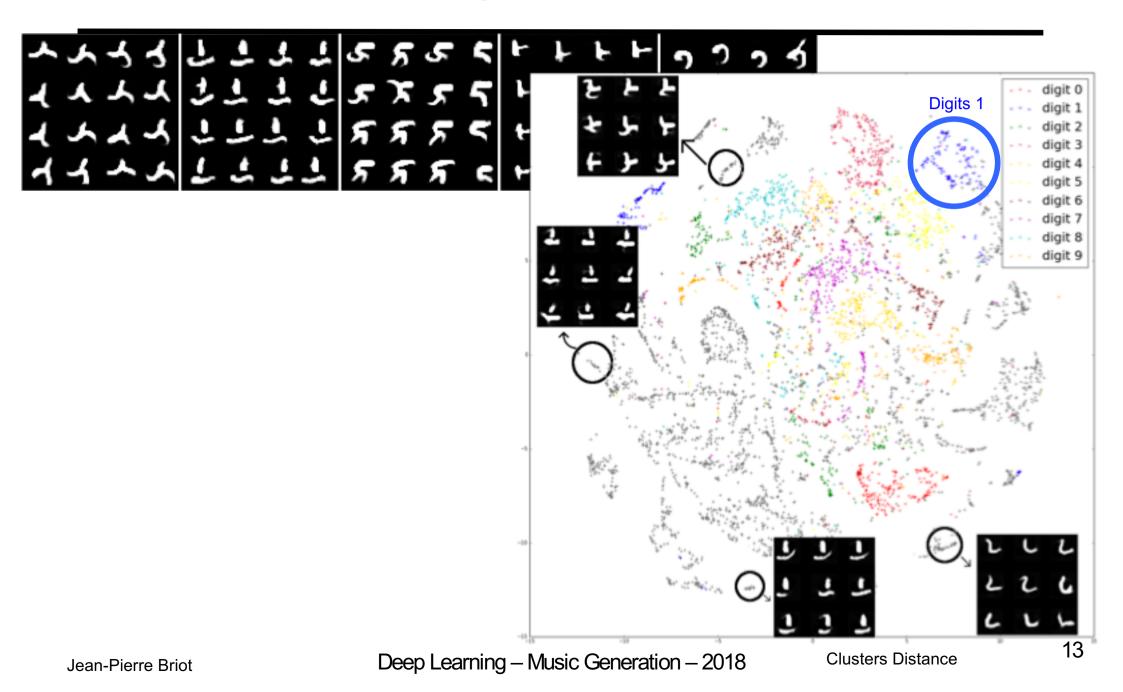
- 3. Feed Forward Random Image into Autoencoder
 - Output Image is Degraded but Features Emerge



4. Reiterate Feeding in Autoencoder with Output as Input until Fixed Point



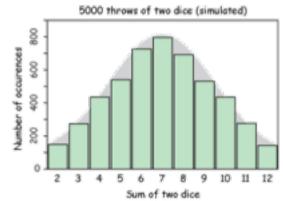
New Types Generation



Variational Autoencoder

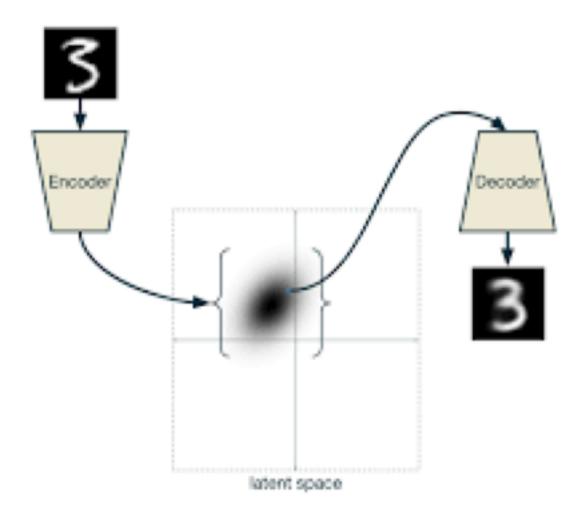
Variational Autoencoder (VAE) [Kingman & Welling, 2014]

- Constraint:
- Encoded representation (latent variables z) follow some prior probabilitydistribution p(z), usually, a Gaussian distribution (normal law)



- Non optimized implementation:
- Adding a specific term to the cost function, by computing the cross-entropy between the values of the latent variables and the prior distribution
- The VAE decoder part will learn the relation between a Gaussian distribution of the latent variables and the learnt examples
- A VAE is able to learn a smooth latent space mapping to realistic examples

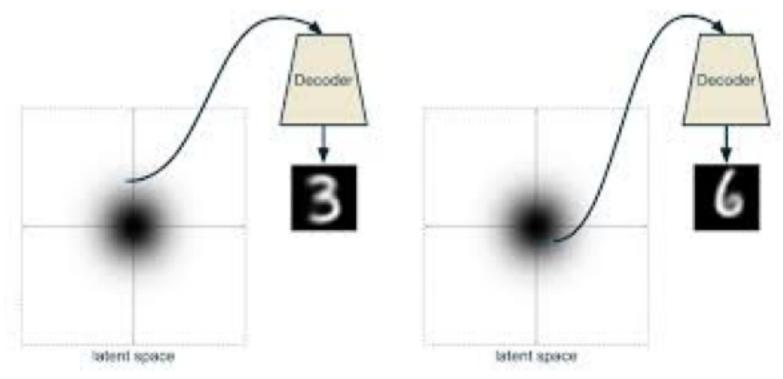
Variational Autoencoder



[Dykeman, 2016]

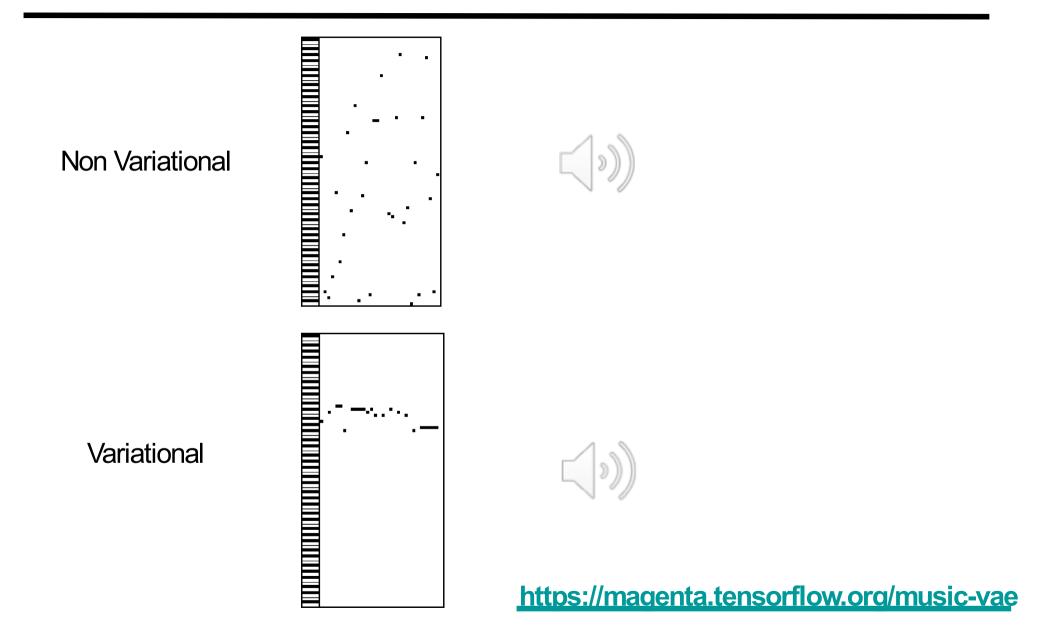
Variational Autoencoder

Generation by Exploring the Latent Space and Decoding



[Dykeman, 2016]

VAE vs AE Generation (MusicVAE [Roberts et al., 2018])



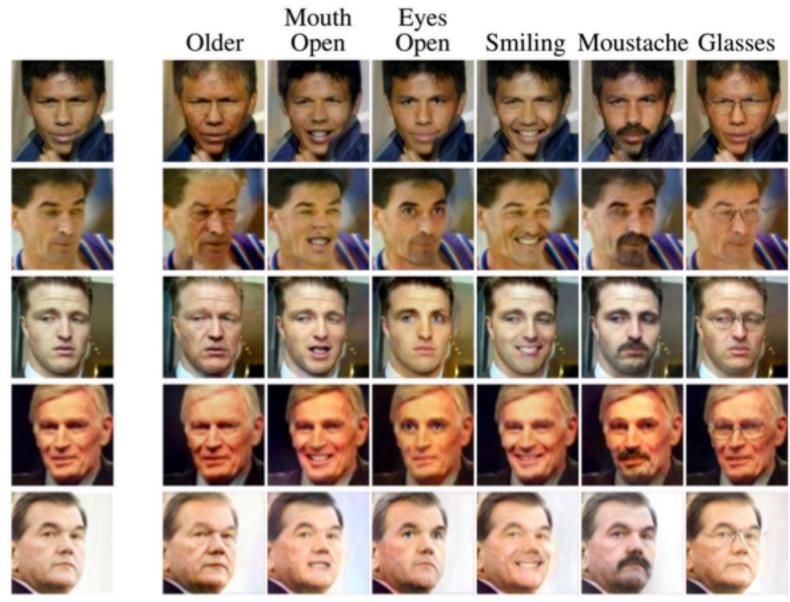
Variational Generation

Exploration of the latent space with various operations to control/vary the generation of content

Ex:

- translation
- Interpolation (morphing)
- averaging of some points
- addition or subtraction of an attribute vector capturing a given characteristic
 - This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic)

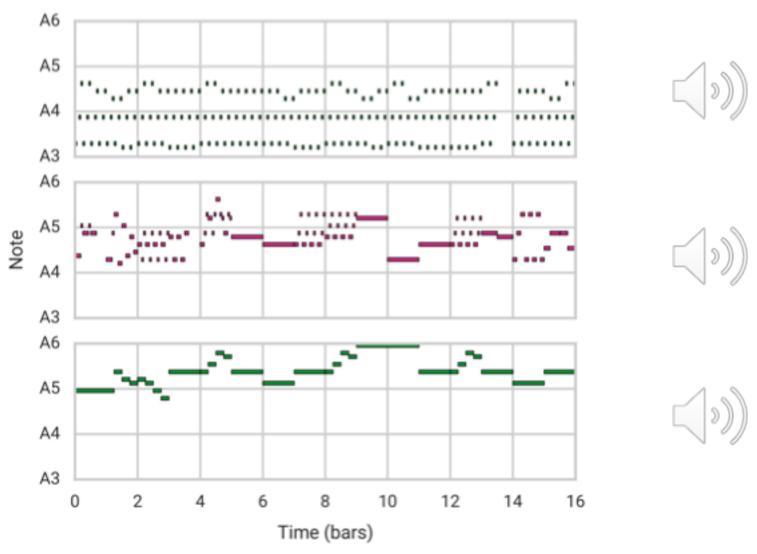
Variational Autoencoder – Ex. of Use



Deep Learning – Music Generation – 2018

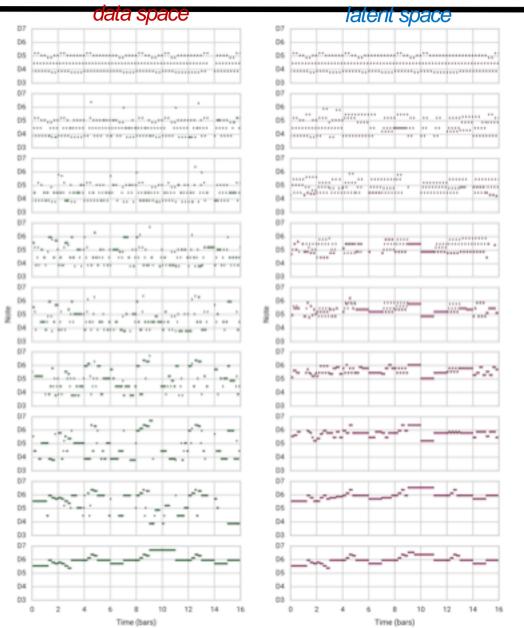
[Li et al., 2016]

Averaging the latent space

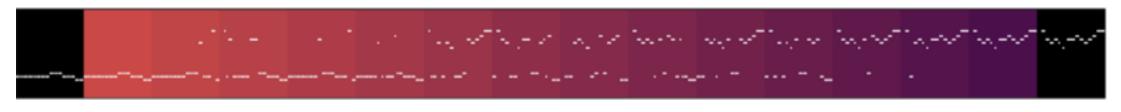


- Comparing Interpolation
 - In the data space (melodies)

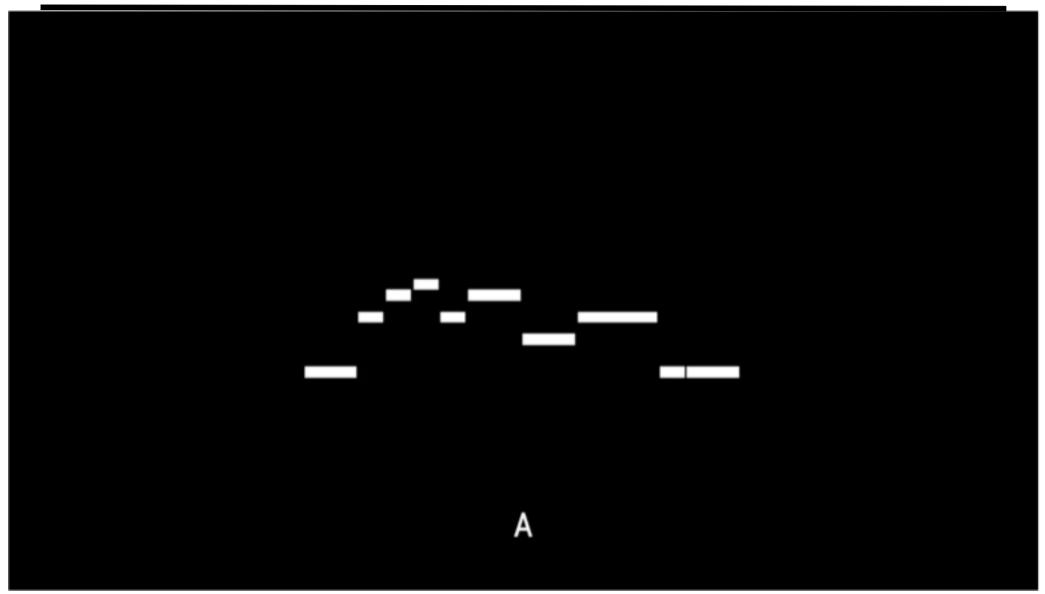
In the latent space



- Comparing Interpolation
 - In the data space (melodies)

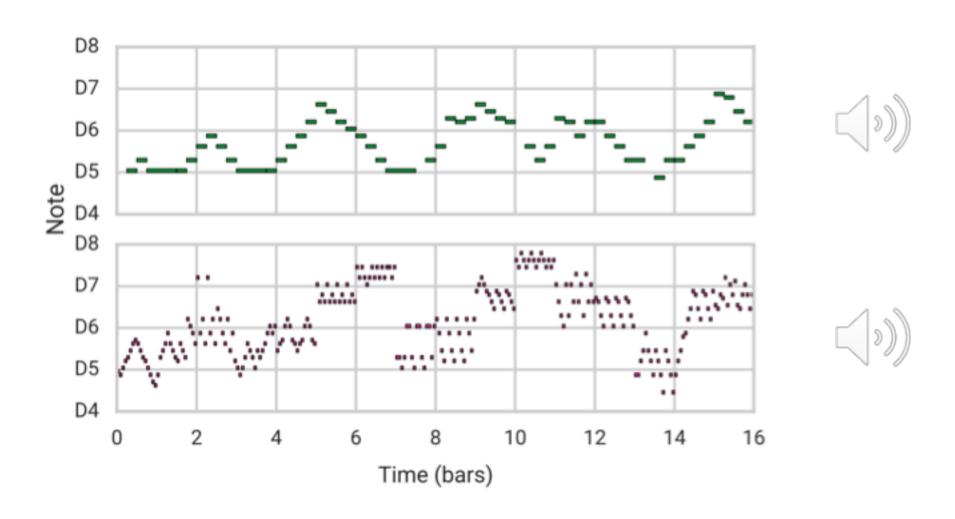


In the latent space



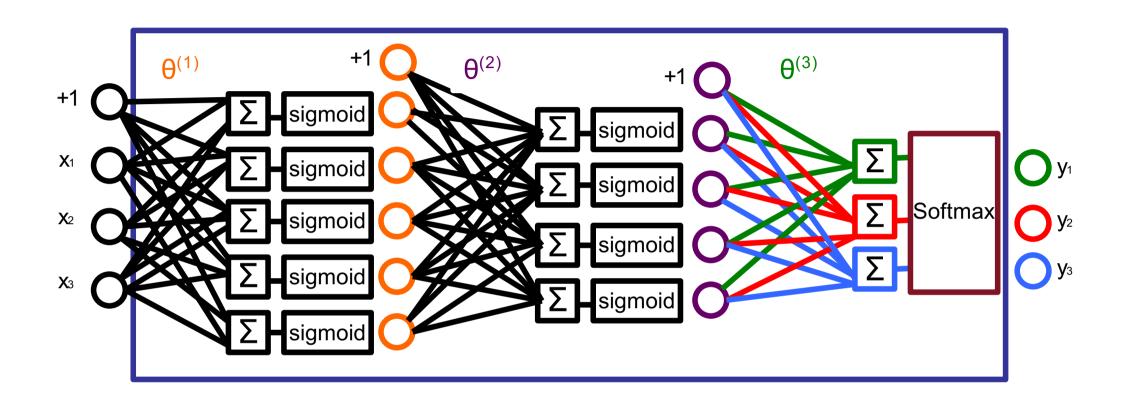
https://www.voutube.com/watch?v=G5JT16flZwM

Adding a high note density attribute vector

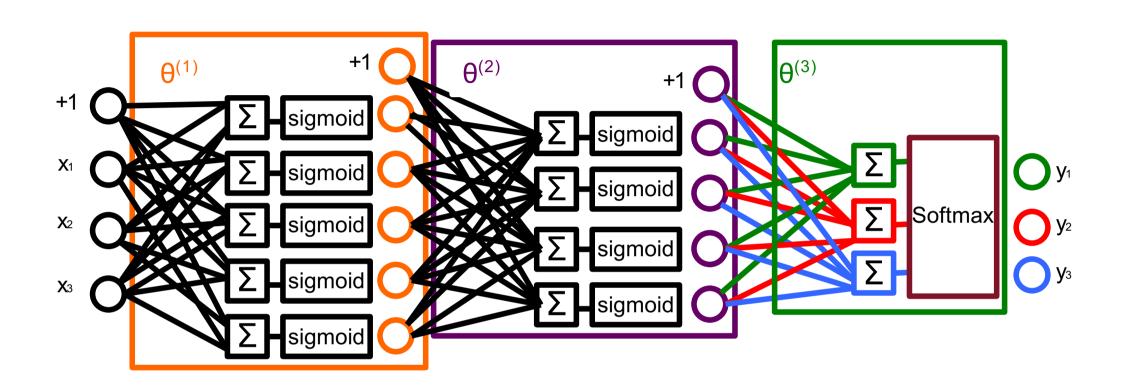


Pre-Training Deep Networks

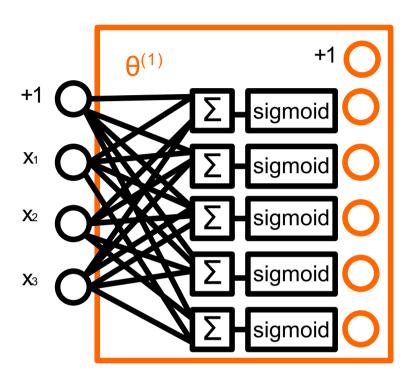
From Multilayer/Deep Networks...



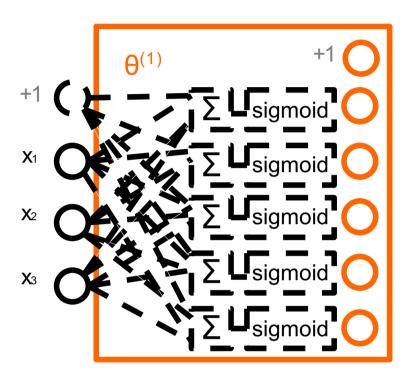
... to Pre-Trained Deep Networks [Hinton 2006]



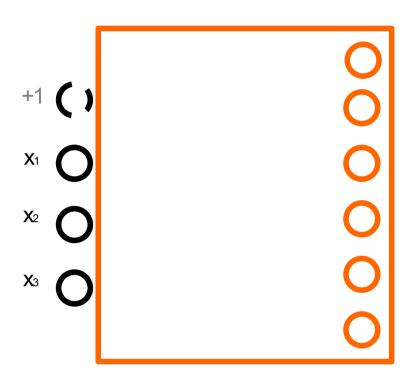
1st Hidden Layer



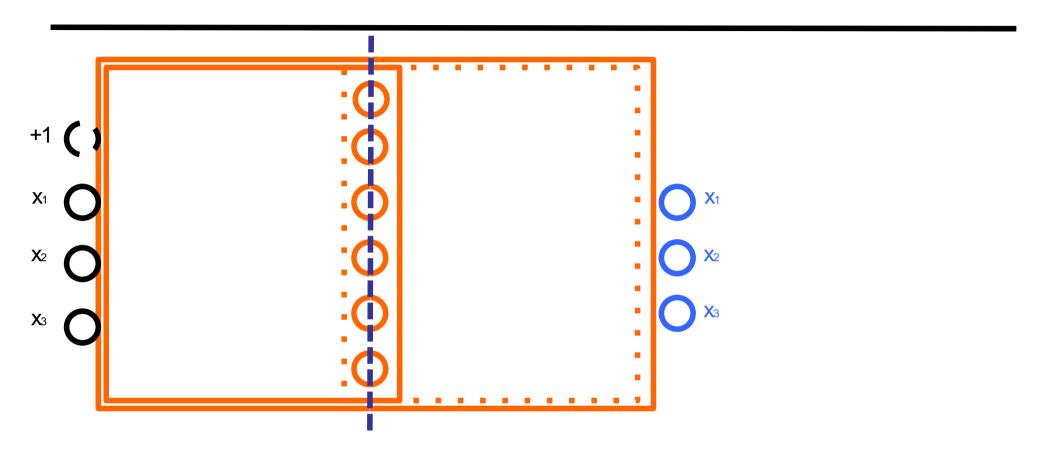
1st Hidden Layer



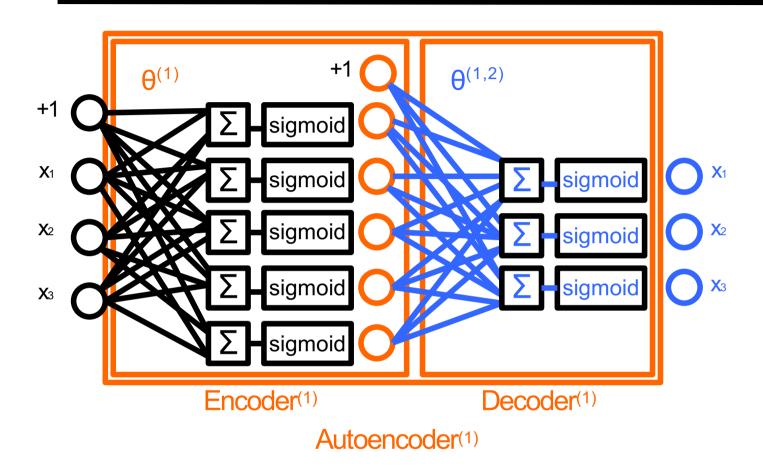
1st Hidden Layer



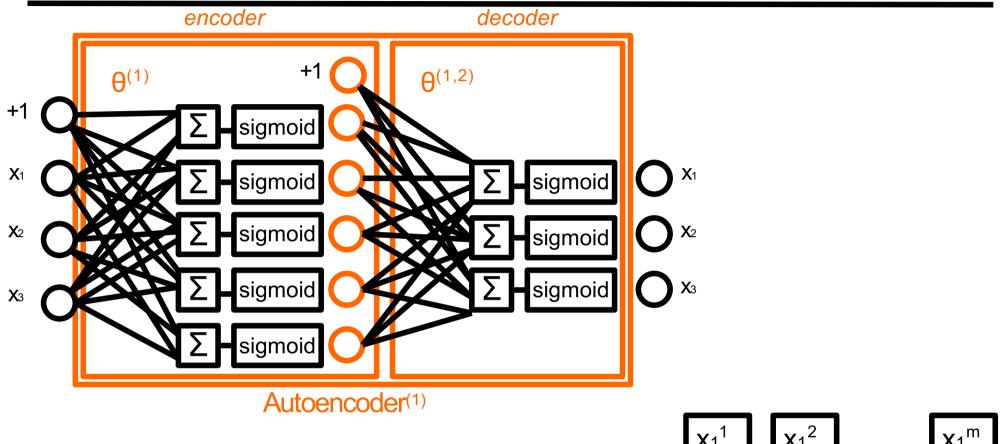
Mirroring Inputs into Outputs



Autoencoder



Autoencoder Self-Supervised Training



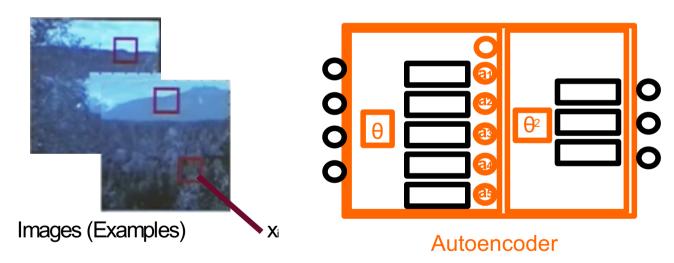
• Training (finding $\theta^{(1)}$ and $\theta^{(1,2)}$) on Input Dataset : X : $\begin{bmatrix} x_1 \\ x_2^1 \\ x_3^1 \end{bmatrix} \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_3^2 \end{bmatrix} \dots \begin{bmatrix} x_1^m \\ x_2^m \\ x_3^m \end{bmatrix}$

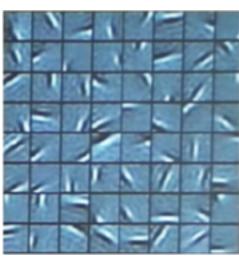
Self-Supervised Training implemented through Supervised Training

with Output = Input : X : Learn Identity with Sparsity Constraint [Ng 2012]

Sparse Autoencoder Learning Features

- Sparse Autoencoding [Olshausen & Field, 1996] [Ng, 2012]
- Originally developed to explain early visual processing in the brain (edge detection)
- Learns a Dictionary of bases Φ₁, ... Φ_k so that each input can be approximately decomposed (recomposed) as: x ≈ _{j=1}^kΣ a_j Φ_j such as a_j are mosty zero (sparsity constraint)



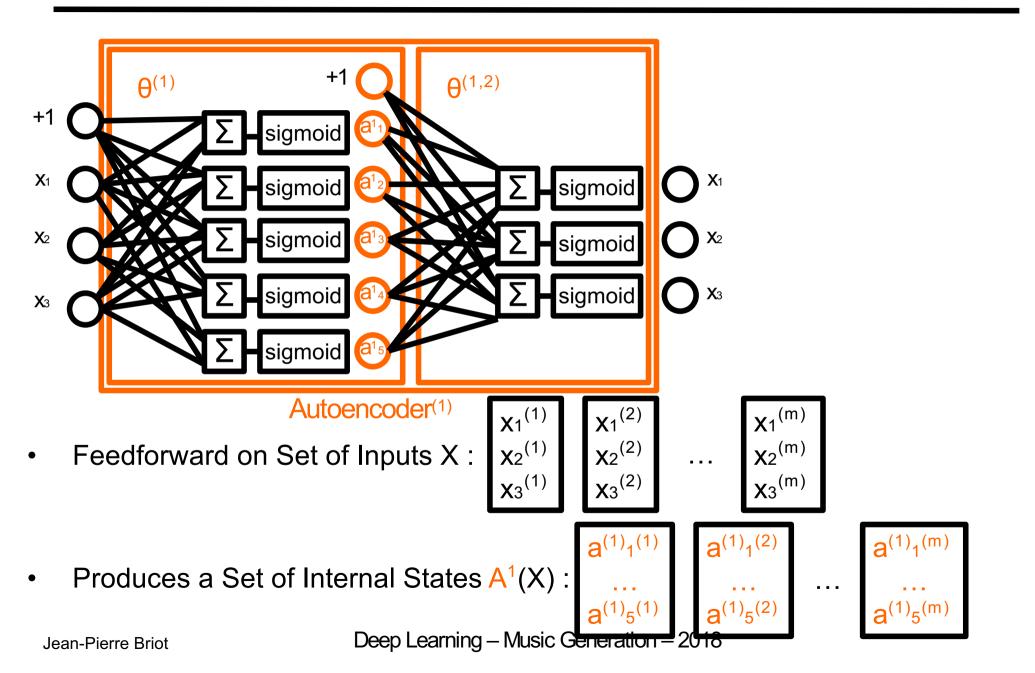


Features: Φ₁, ... Φ_k

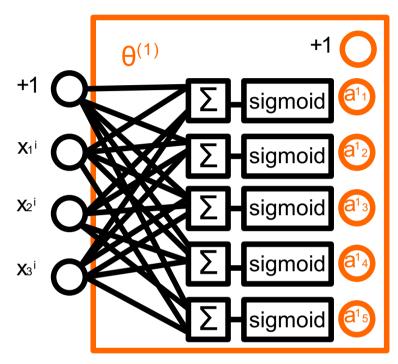
- "Invents" (learns) higher level features (e.g., edges)
- Sparsity forces specialization (feature detector) of each unit
- Alternative Non supervised learning architectures, e.g., Restricted Boltzman Machines (RBM) [Smolensky 1986] [Hinton et al. 2006]
 Jean-Pierre Briot Deep Learning – Music Generation – 2018

[Ng, 2013]

1st Sparse Autoencoder Production



1st Sparse Autoencoder Finalization



Autoencoder⁽¹⁾

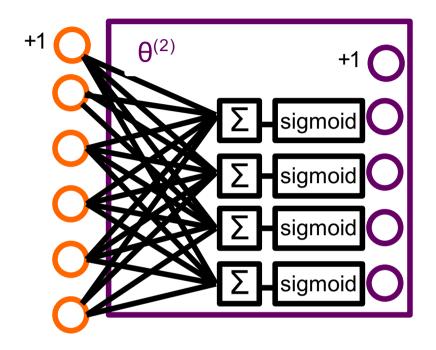


Learnt features⁽¹⁾

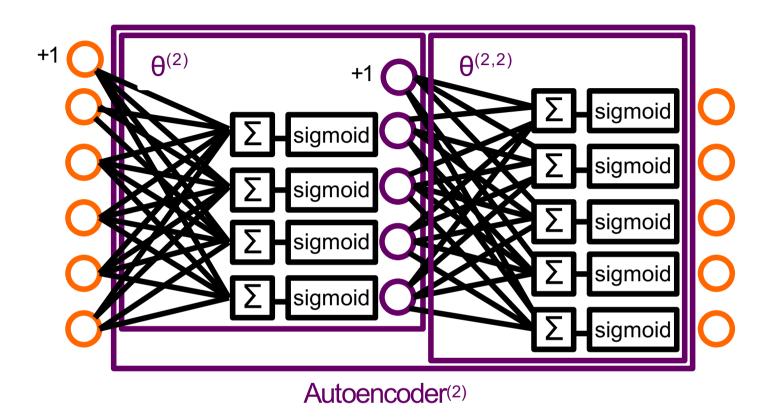
Note:

- Outputs and weights matrix \(\theta^{(1,2)}\) (decoder)
 are discarded They will not be used
- The weights matrix θ⁽¹⁾ is saved for the final stage (final global fine tuning see later)
- It provides accurate initialization of this layer's weight matrix
- The set of Internal States a⁽¹⁾ is kept for the next stage
- It provides examples inputs for the next layer autoencoder (see next slide)

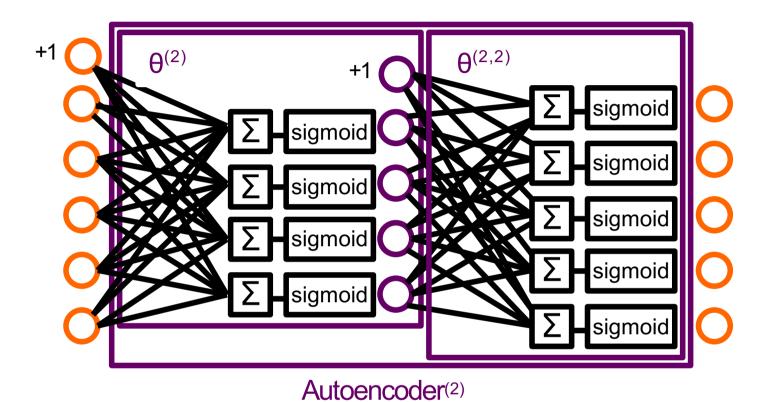
2nd Hidden Layer



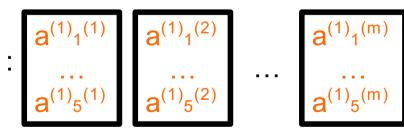
2nd Sparse Autoencoder



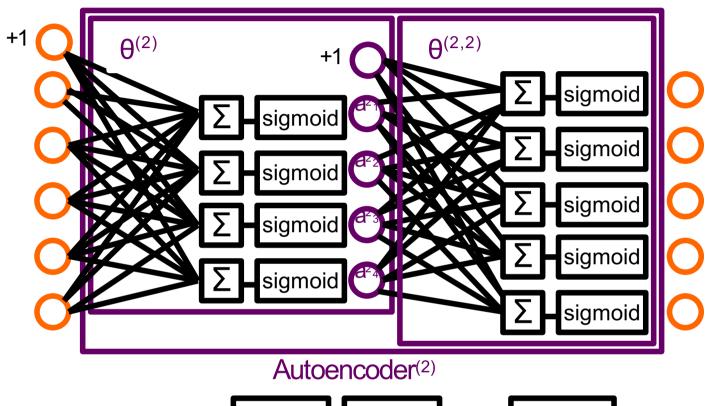
2nd Sparse Autoencoder Training



• Training $(\theta^{(2)}$ and $\theta^{(2,2)}$) on Input Dataset : $A^1(X)$:



2nd Sparse Autoencoder Production



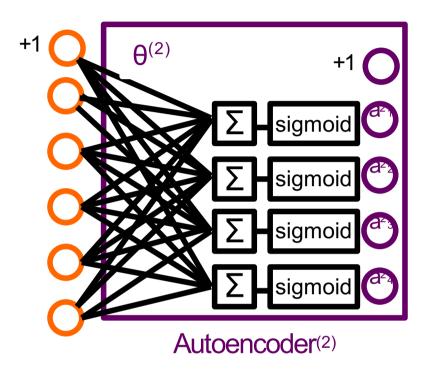
• Feedforward on Input Dataset : A¹(X) :

 $a^{(1)}1^{(1)}$ $a^{(1)}1^{(2)}$ $a^{(1)}1^{(m)}$ $a^{(1)}5^{(1)}$ $a^{(1)}5^{(m)}$

a⁽²⁾1⁽²⁾

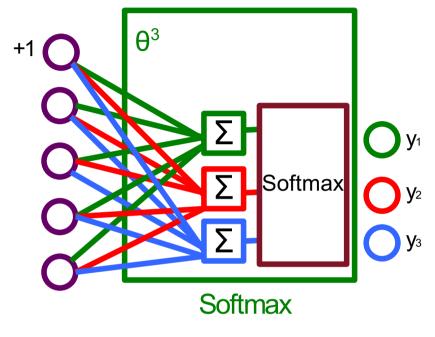
Produces a Set of Internal States A²(A¹(X)):
 Jean-Pierre Briot
 Deep Learning – Music Generation – 2018

2nd Sparse Autoencoder Finalization



Learnt features⁽²⁾

(Final) Softmax Layer



• (Supervised) Training on Input Dataset : A²(A¹(X)) :

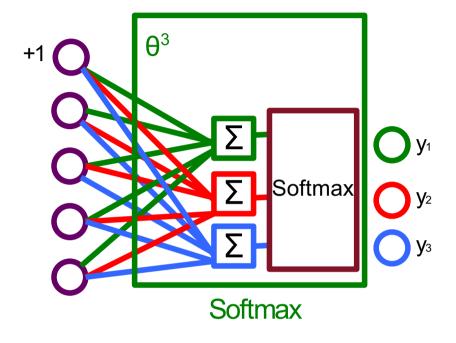
 $a^{(2)}1^{(1)}$ $a^{(2)}4^{(1)}$

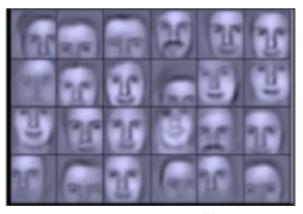
 $a^{(2)}1^{(2)}$... $a^{(2)}4^{(2)}$

a⁽²⁾1^(m)
...
a⁽²⁾4^(m)

and Output Dataset: y:

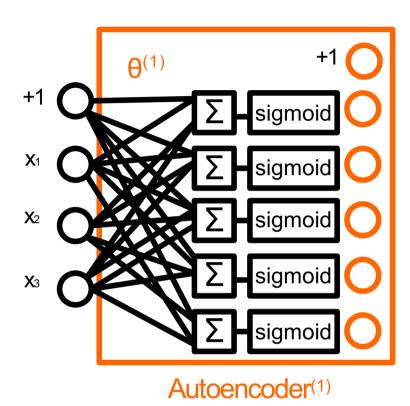
(Final) Softmax Layer Finalization



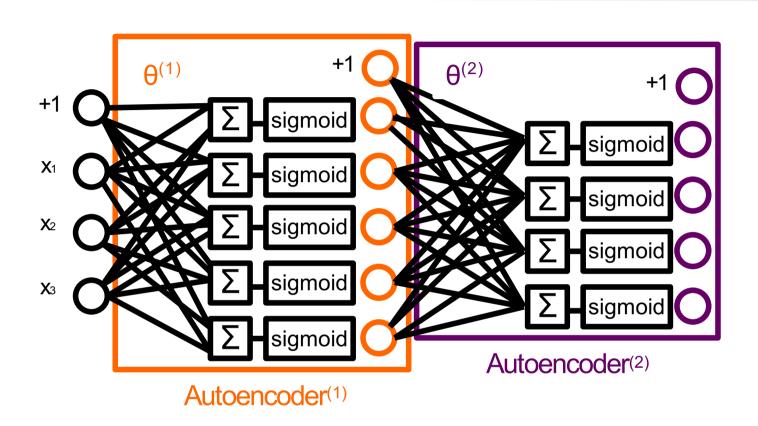


Learnt features(3)

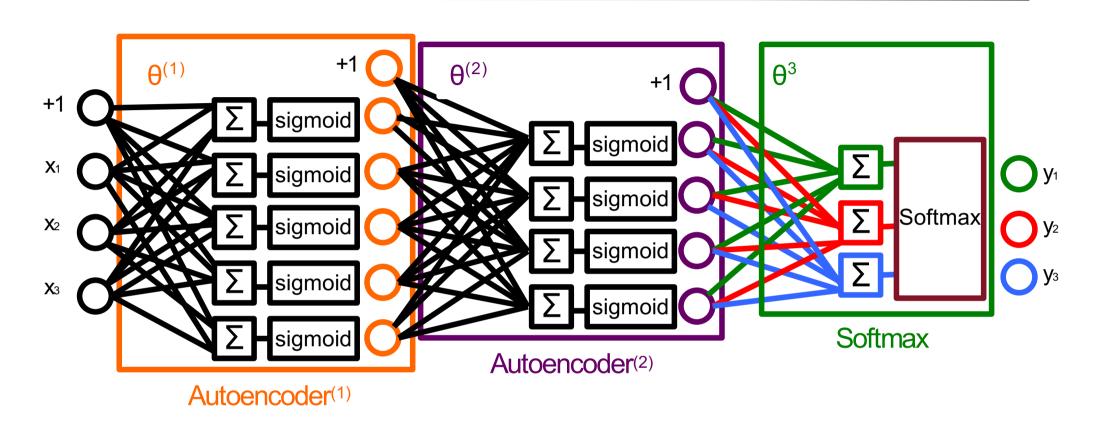
Assembling the Pre-Trained Deep Network



Assembling the Pre-Trained Deep Network

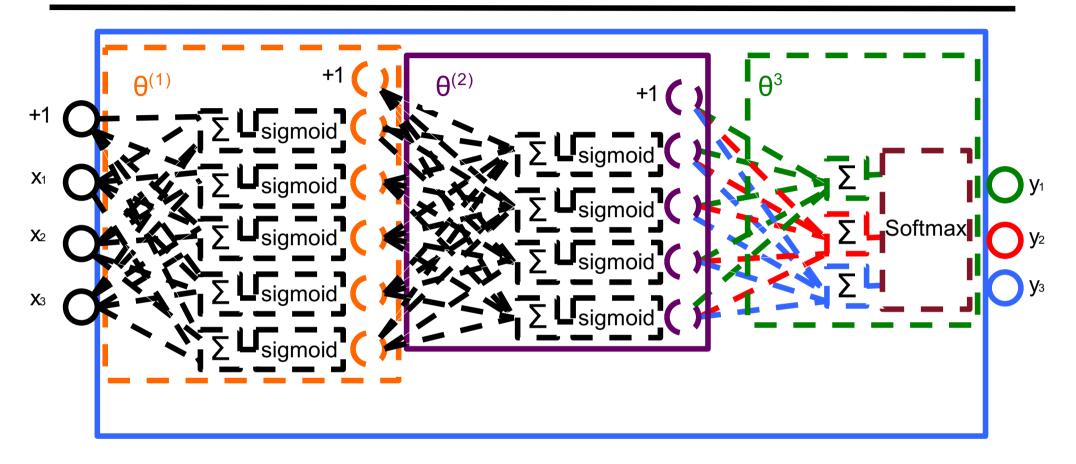


Assembling the Pre-Trained Deep Network Functional Composition

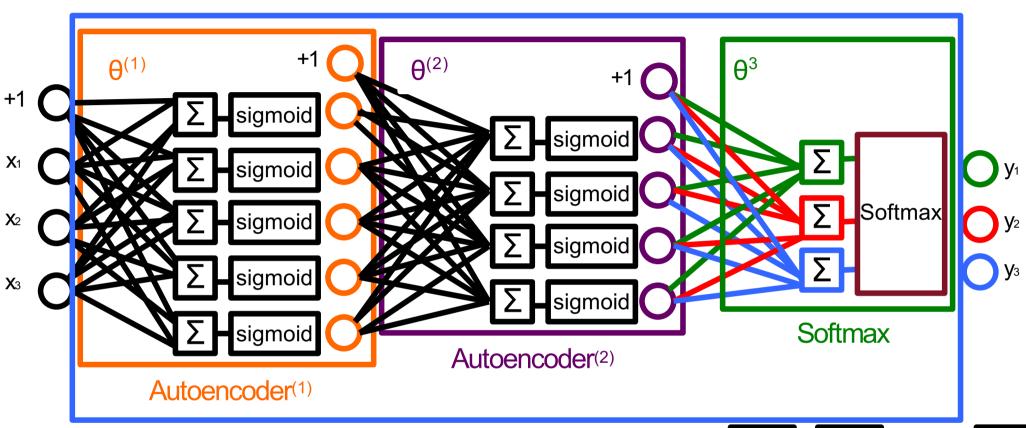


47

Assembling the Pre-Trained Deep Network Structural Composition – Composite Component

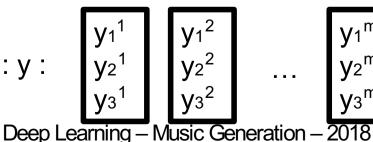


(Pre-Trained) Deep Network Final Global Training (Fine Tuning)



• Training (improving $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$) with Input Dataset : X :

and Output Dataset: y:



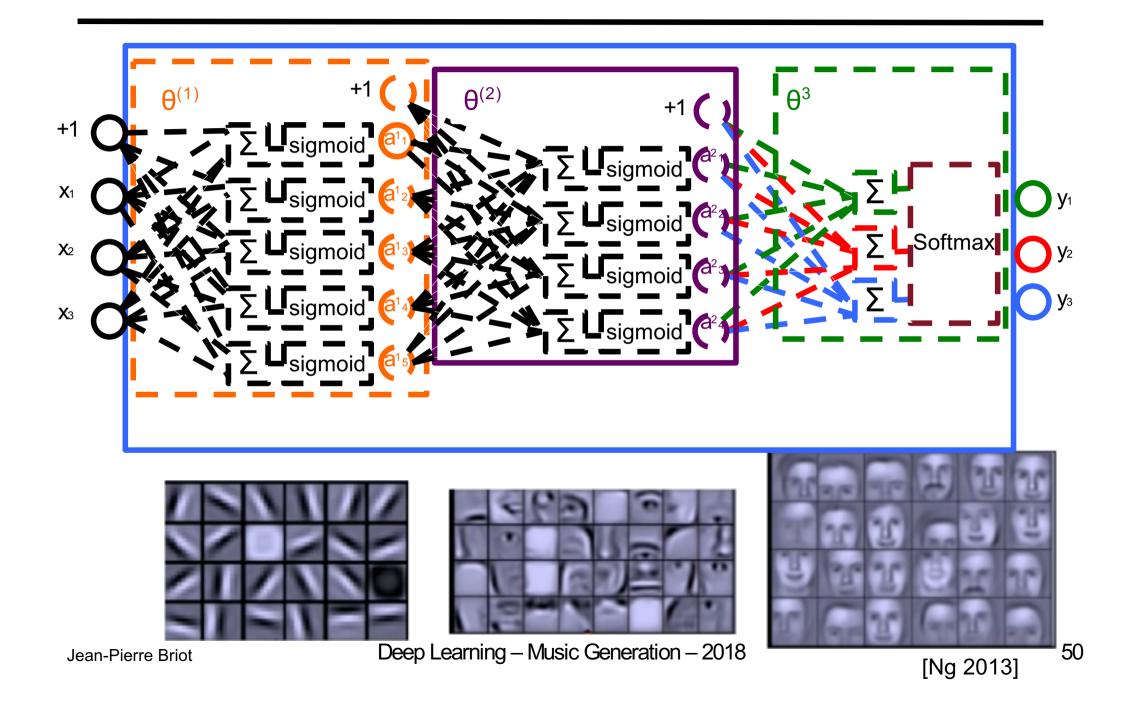
X1²
X2² ...
X3²

 X_1^1

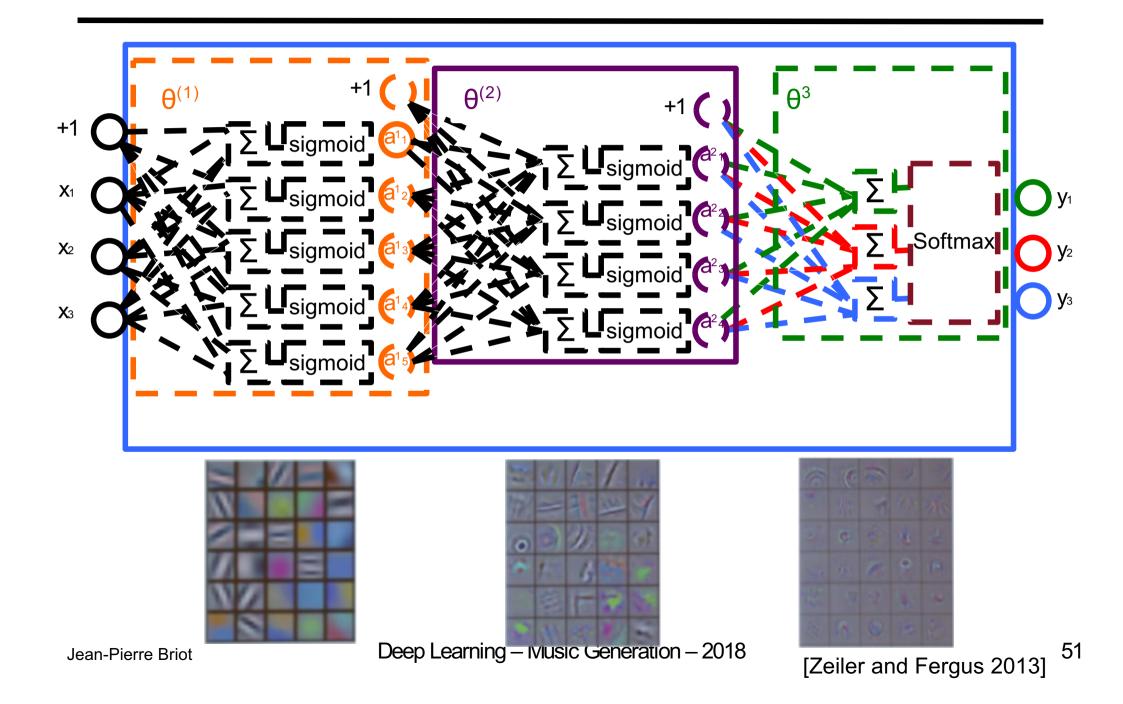
 $X2^1$

X1^m **X**2^m **X**3^m

Successive Features/Abstractions Constructed



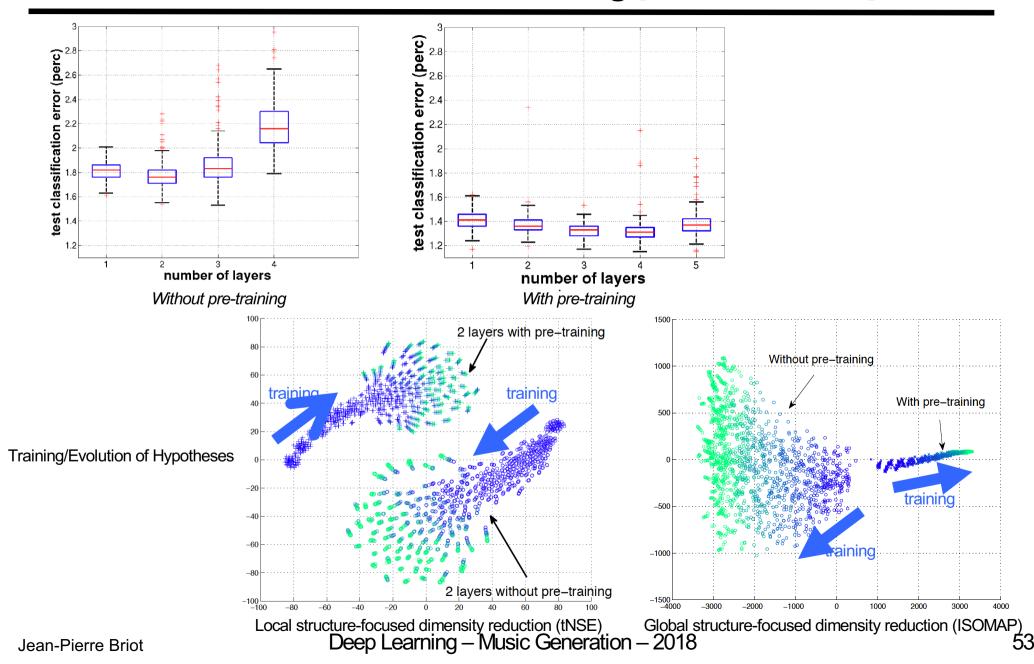
Successive Features/Abstractions Constructed



Summary – Key Ideas

- 1. Automatic Construction (Cascade Learning) of Hierarchical Abstractions/Features, which are Exposed and Useable (and Used, see 2.)
 - In Standard Multilayer Neural Networks, Features are Hidden (Black Box)
- 2. Accurate Initialization of Weights Matrixes for each Layer
 - In Standard Multilayer Neural Networks, Initialization of Weights Matrixes of each Layer is Heuristic, and is NOT Based on Information (Training Data/Examples)
 - InPre-trained Deep Networks, Initialization is based on Training Examples for the First Layer and on Successive Features extracted from Training Examples for Successive Layers
 - Therefore Initialization could be Much More Accurate
 - Remember that Initialization of Weights Matrixes is Critical because the Cost Function to be Minimized is Not Convex, therefore a Good Start (More Accurate Initialization) is a Better Promise to Avoid Falling into a Bad Local Minimum
 - This Appears (at least conceptually/potentially) as a Main Advantage of Pre-Training Deep Networks [Erhan et al. 2010]
- Using Autoencoders (e.g. rather than Restricted Boltzmann Machines) is particularly Elegant/Economical, because Standard Supervised Learning Algorithm is used to implement/emulate Self-Supervised Learning Music Generation 2018

Analysis of Differences between Deep Network with and without Pre-Training [Erhan et al. 2010]



Gains

(Significantly) Better Accuracy (upto 10% gain [Hinton 2009])

	Ralik	Ivallie	rate	Description
١	1	U. Toronto	0.15315	Deep learning
)	2	U. Tokyo	0.26172	Hand-crafted
	3	U. Oxford	0.26979	features and
	4	Xerox/INRIA	0.27058	learning models. Bottleneck.

- Better Generalization (Regularization)
- Automatic Construction (Cascade Learning) of Hierarchical Abstractions/Features
- More Data Available for Training Autoencoders/Hidden Layers
 - Does not need Labels because Self-Supervised/Unsupervised
 - But Data should be from the same Domain to be learnt
 - Relation with Transfer Learning
- But Pre-Training is less Used at this Moment

Because other Techniques Optimizing Learning (Improving Generalization) are

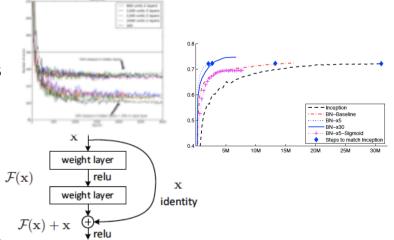
Efficient

Preventing co-adaptation of feature detectors

Randomly omitting half of the feature detectors

Advanced Dropout

- Batch Normalization [loffe & Szegedy, 2015]
 - Normalization of each layer unit
- Deep Residual Learning [He et al., 2015]
 - Learning $x \rightarrow x+y$ and not $x \rightarrow y$

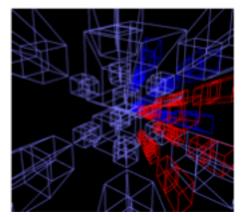


Deep Learning – Music Generation – 2018

Manifold Representation

The Malediction of High Dimensionality [Mallat, 2018]

- Ex: Image with 2,000 x 1,000 pixels with color
- \bullet = 6.000.000 bits
- Space of dimension 6.000.000 !!

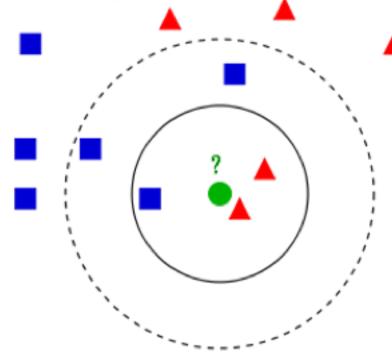


The Malediction of High Dimensionality [Mallat, 2018]

Ex. of Task: Image recognition (Classification Task)

kNN algorithm (k Nearest Neighbors)

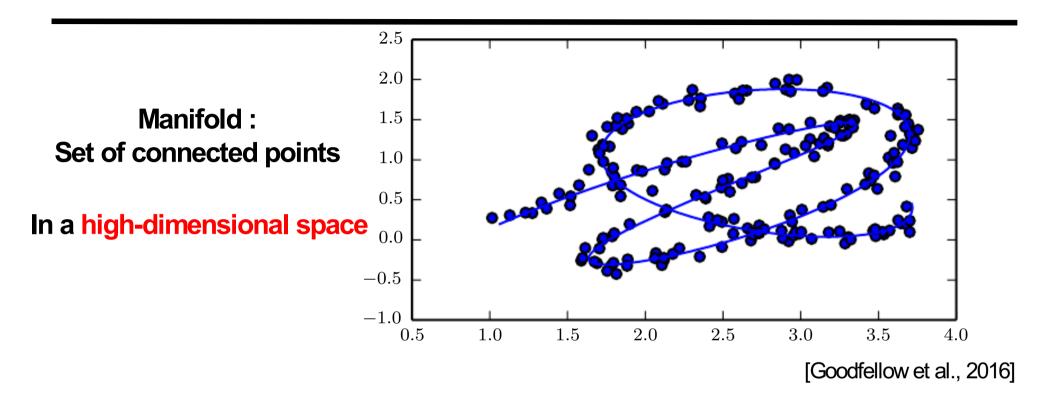
 The class of an element = majority class of k nearest neighbors



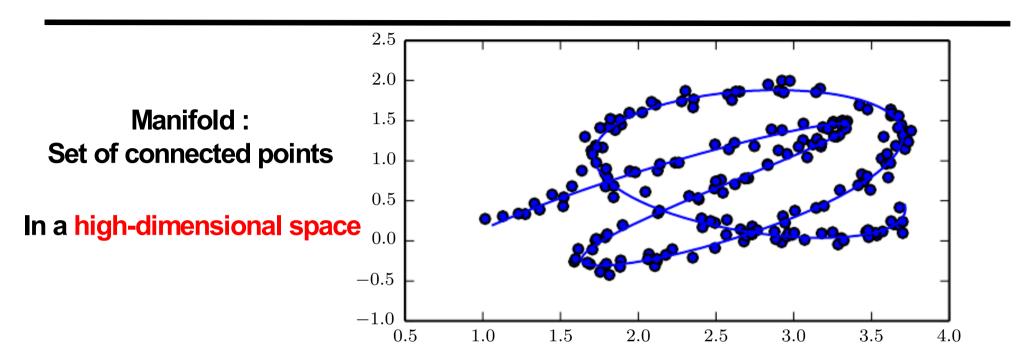
Problem:

 Euclidean distance is unhelpful in high dimensions because all vectors are almost equidistant to the query vector

Representation/Manifold Learning

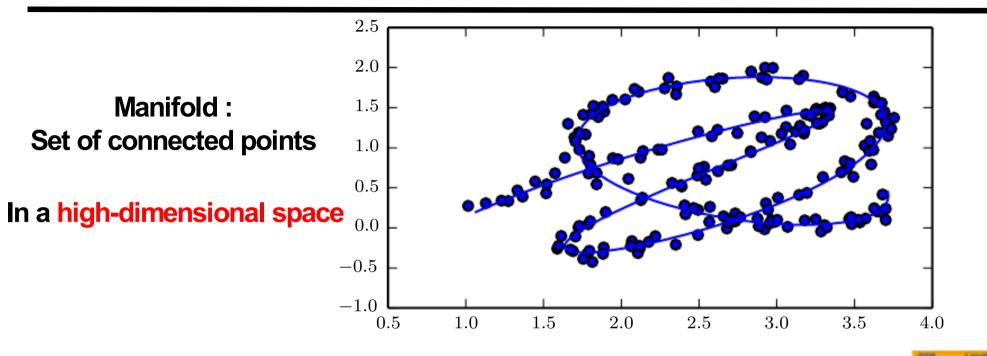


Representation/Manifold Learning



But can be approximated by a smaller number of dimensions, each dimension corresponding to a local variation

Representation/Manifold Learning



But can be approximated by a smaller number of dimensions, each dimension corresponding to a local variation

3D Earth

Analogy:

Toscana

2D Map