## Deep Learning Techniques for Music Generation (5)

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université – CNRS



Programa de Pós-Graduação em Informática (PPGI)

UNIRIO

#### Recurrent

## #1 Limitation - Generation and #2 Limitation - Fixed Length

Works OK

#### But:

Fixed input (and output) length

# #1 Limitation – Generation and #2 Limitation – Fixed Length Solution: Recurrent Network (RNN)

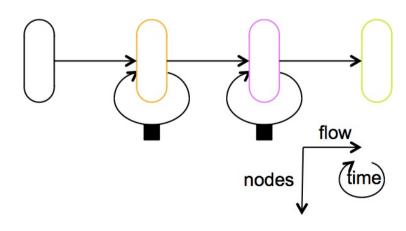
Works OK

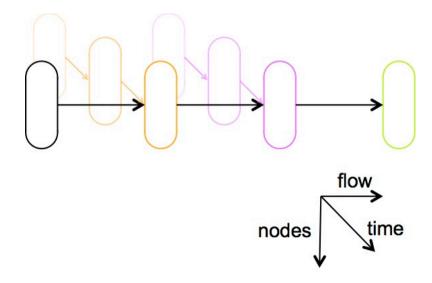
#### But:

Fixed input (and output) length

#### Solution:

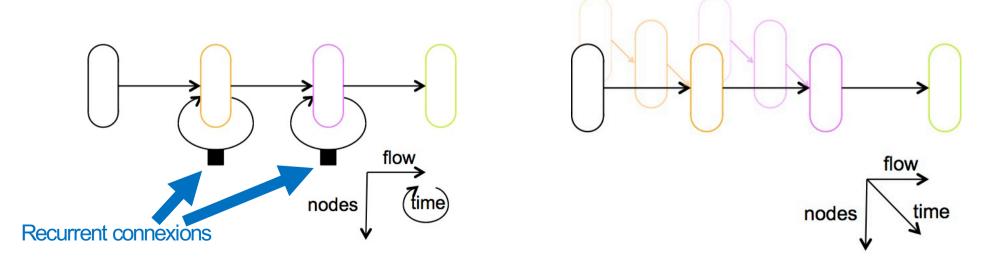
- Recurrent Network (RNN)
- Variable length
- Memorizes previous steps
- Predicts next step



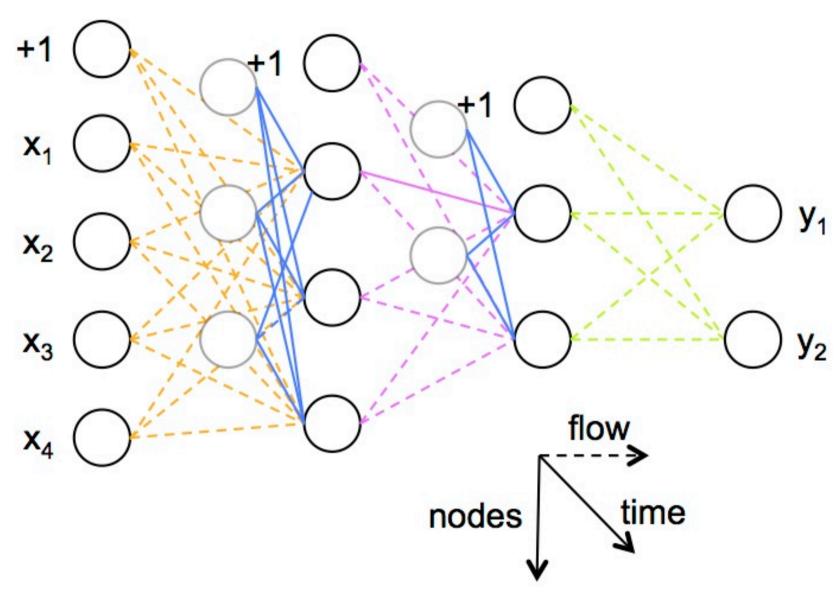


#### **Recurrent Network (RNN)**

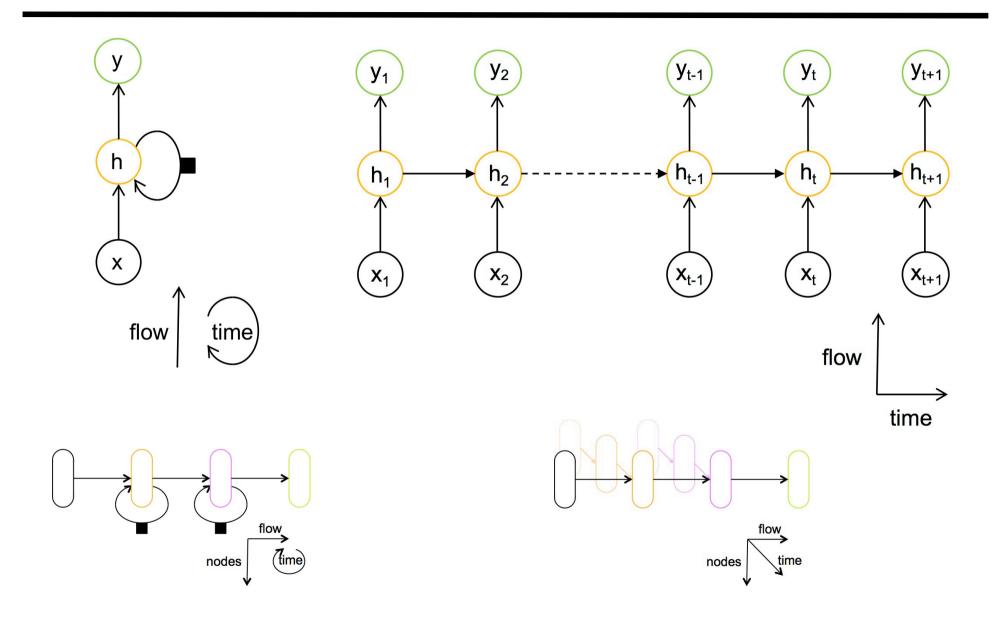
- Memorizes previous steps
- Can learn from previous step
- Predicts next step
- Can learn sequences



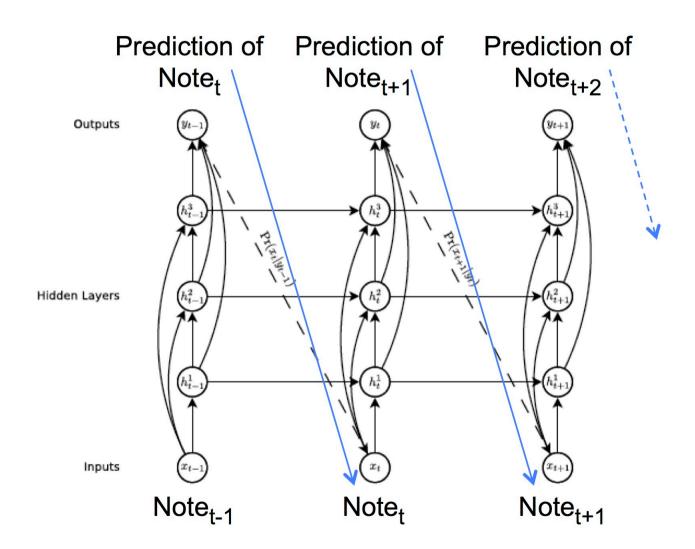
#### **Recurrent Connexions**



## **Alternative (More Common) Notation**

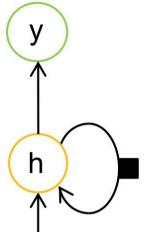


#### **RNN Prediction**



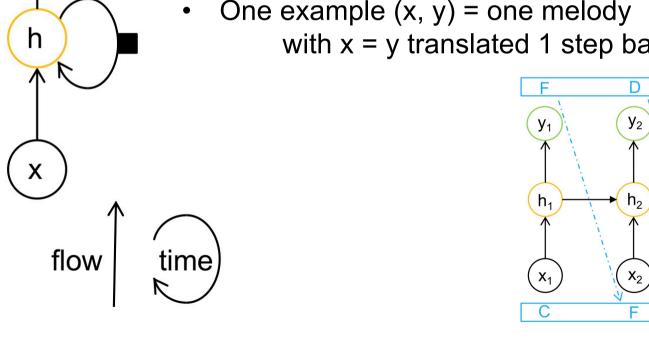
#### **Training a RNN**

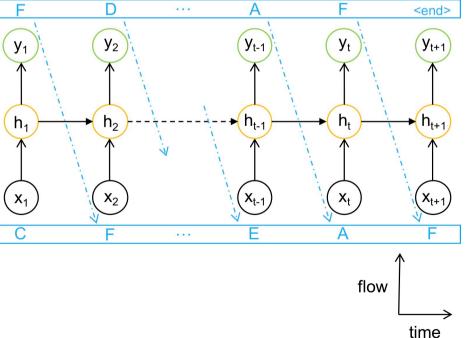
y = Expected next note(x)



#### Training with

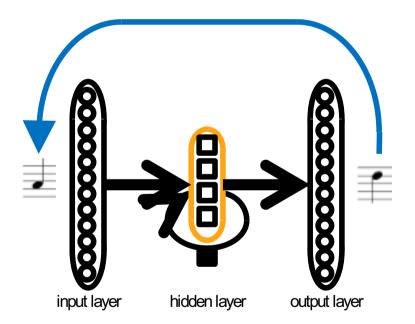
- One example (x, y) =one note Or
- One example (x, y) =one melody with x = y translated 1 step back





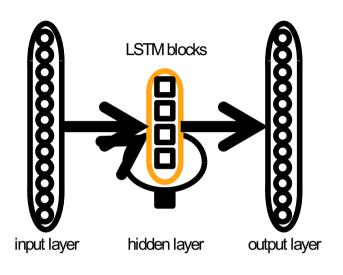
#### **RNN Generation**

- Iterated generation
  - Note by Note
  - Reinject Next Note to Produce Next Next Note
  - Arbitrary Length





#### **RNN** – Iterative Feedforward – #1 Example



Synthetic corpus : arpeggio of C major chord

activation = 'softmax'))

C E

X (note)

E

G B

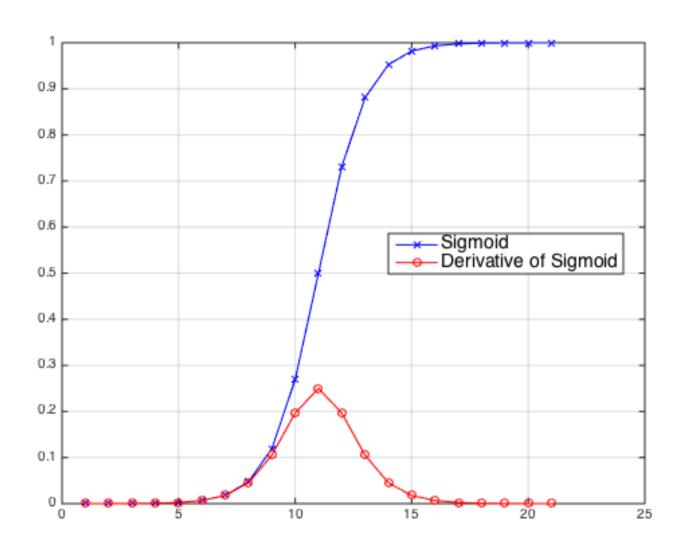
3



y (next note)

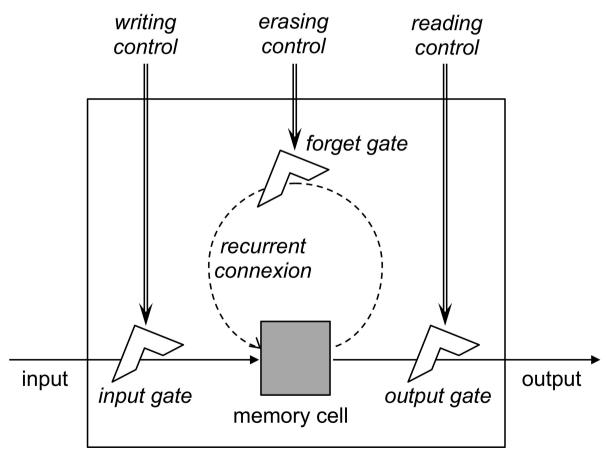
4 examples

## **Gradient Vanishing/Explosion**



## LSTM (Long Short-Term Memory) [Hochreiter and Schmidhuber, 1997]

- Protection of Memory by Gates
- Gates are controlled by differentiable functions
- Thus subject to Training
- Training of the Meta-Level (Control)



#### **RNN** – Iterative Feedforward – #2 Example

- Ex: Celtic melody generation [Sturm et al., 2016]
- Celtic Folk Music Corpus (Melodies)
- Text Encoding (ABC Notation)

X: 1

T: A Cup Of Tea

R: reel

M: 4/4

L: 1/8

K: Amix





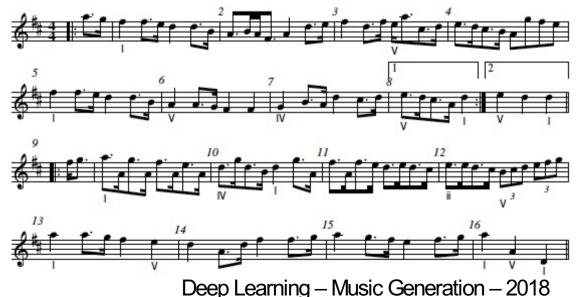
|:eA (3AAA g2 fg|eA (3AAA BGGf|eA (3AAA g2

fg|1afge d2 gf:|2afge d2 cd||

|:eaag efgf|eaag edBd|eaag efge|afge dgfg:|

#### **RNN Celtic Melody Generation**

- Iterated generation
  - Note by Note
  - Arbitrary Length
- Ex: Celtic melody generation [Sturm et al., 2016]
- Celtic Folk Music Corpus (Melodies)
- Text Encoding (ABC Notation)
- Ex. of Melody Generated



Played by a human accordeonist

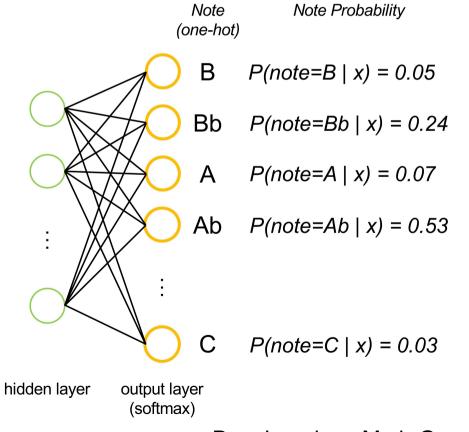


#### #3 Limitation – Variability

- No Variability in the Generation
- Because Neural Networks are Deterministic
  - Same Input -> Same Output
  - Same First Note -> Same Whole Melody Generated
- Solution:
  - Sampling

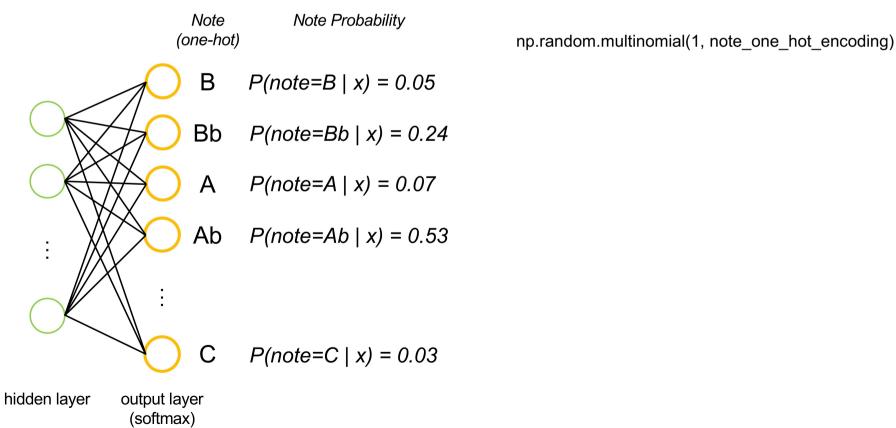
## #3 Limitation – Variability – Solution: Sampling

- Input Representation: One-Hot Encoding
  - Corresponds to a Piano Roll Representation
- Softmax Ouput Layer
- Classification Task (between possible Notes)



#### Sampling

- Deterministic Strategy:
  - Choose the Class (Note/Pitch) with the Highest Probability
- Sampling (Variability)
  - Sample within Possible Notes (Classes) (following the Probability Distribution)



Deep Learning – Music Generation – 2018

#### **No Sampling**

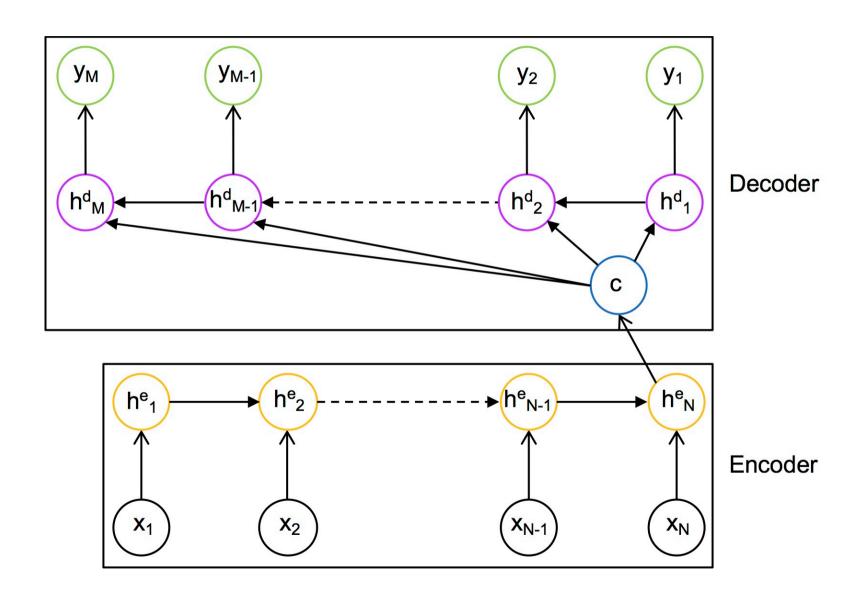
- In fact, Celtic melody generation [Sturm et al., 2016] is using sampling,
- Whereas Blues melody generation [Eck & Schmidhuber, 2002] is not



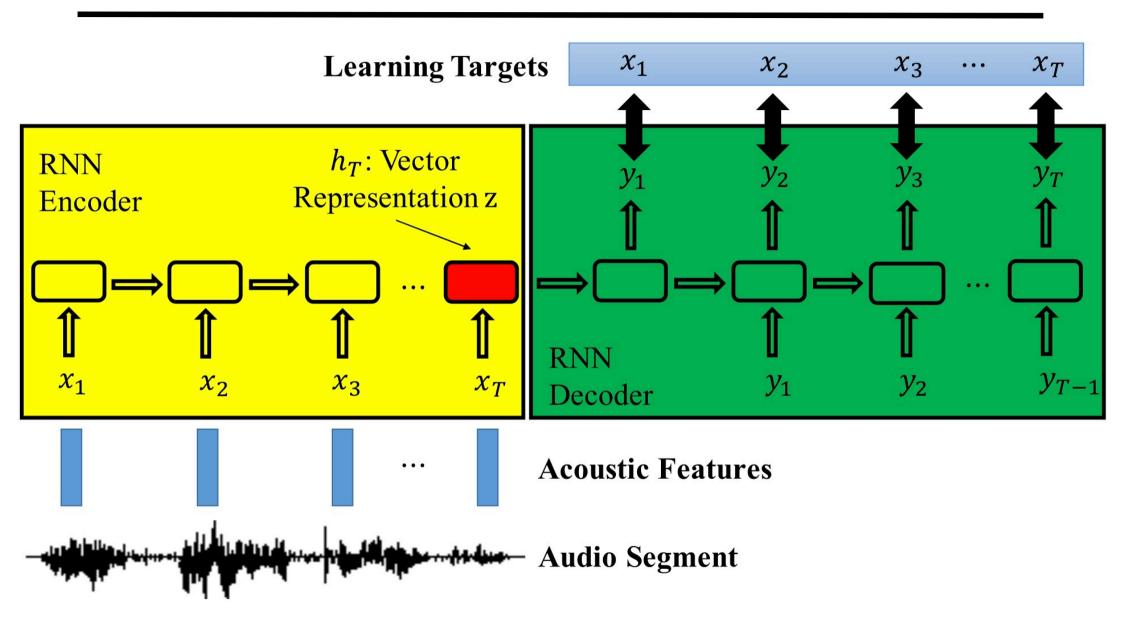
http://www.iro.umontreal.ca/~eckdoug/blues/lstm 0224 1510.mp3

#### **RNN Encoder-Decoder**

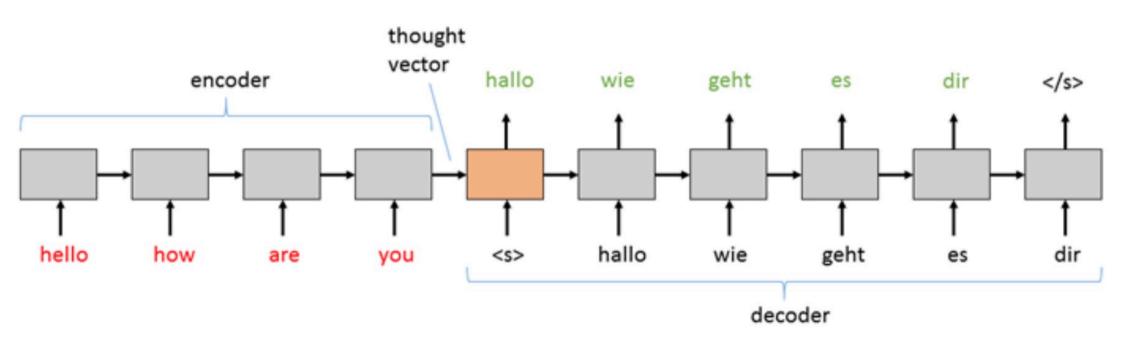
#### **RNN Autoencoder: RNN Encoder-Decoder**



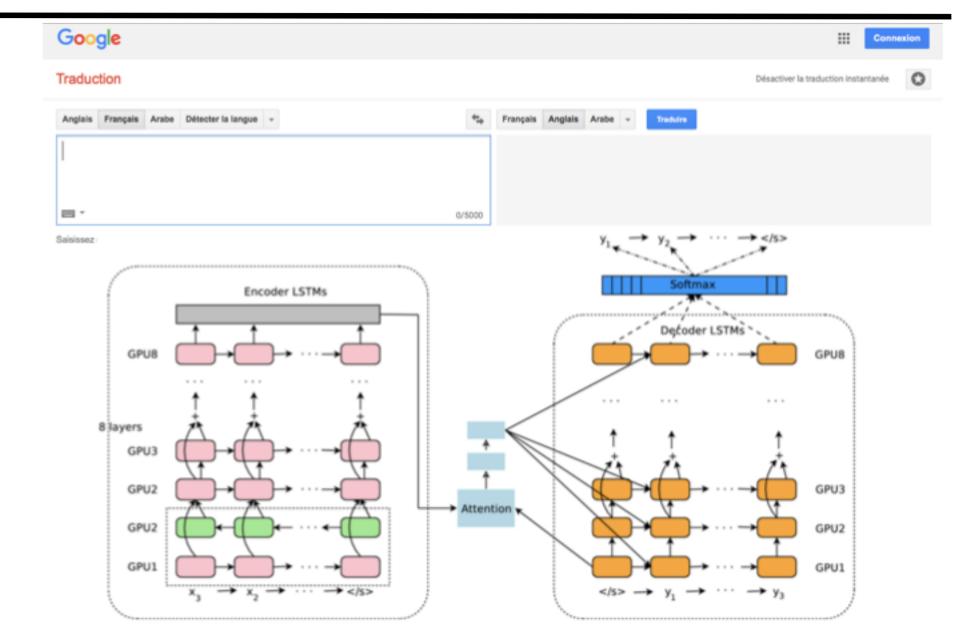
### From Speech to Text [Chung et al., 2016]



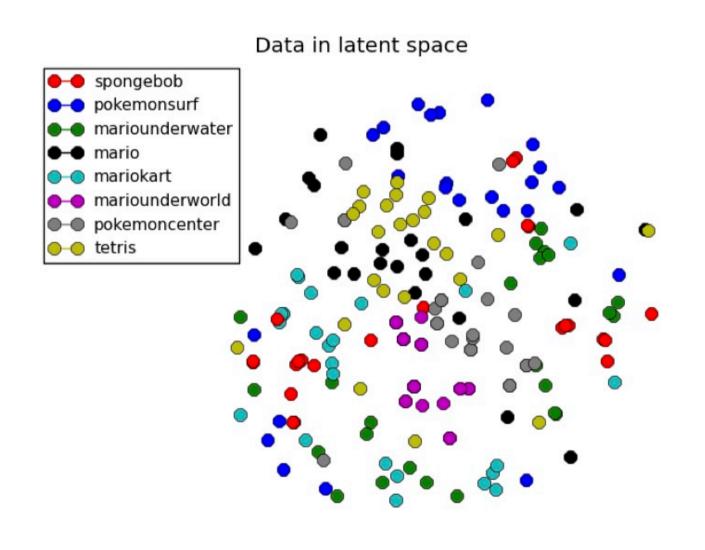
## Translation Sequence to Sequence



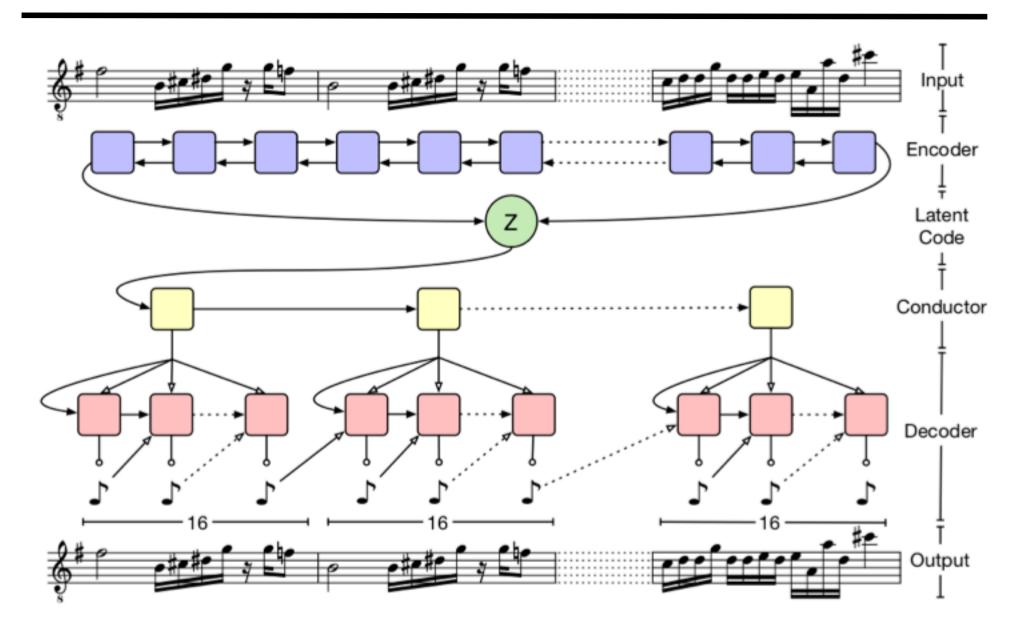
#### **Translation**



## Variational RNN Encoder-Decoder VRAE [Fabius and van Amersfoort, 2015]



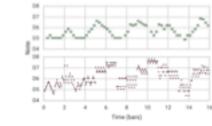
## MusicVAE [Roberts et al., 2018]



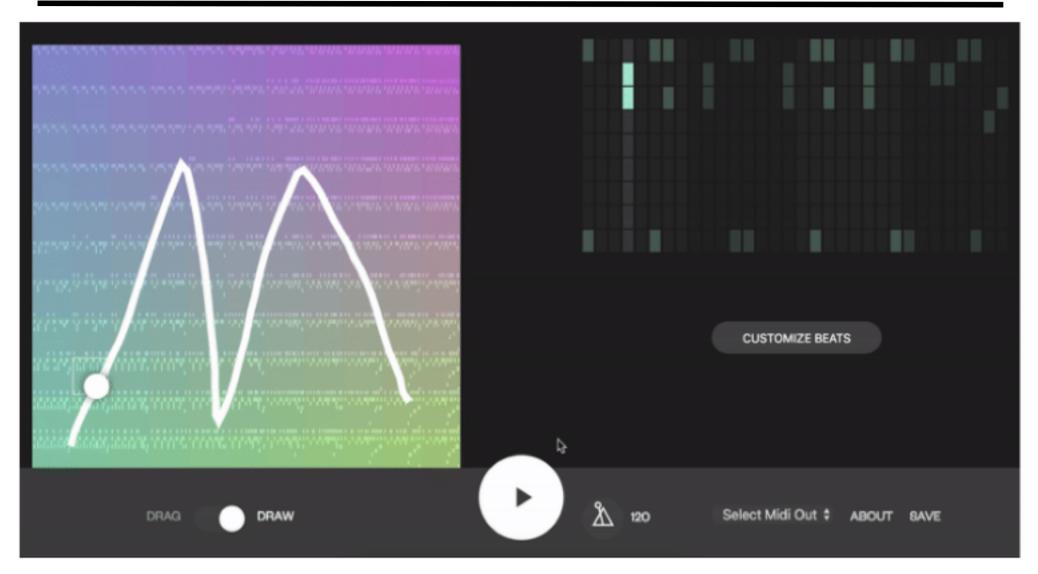
## MusicVAE [Roberts et al., 2018]

- Hierarchical
  - Conductor RNN
  - Bottom RNN
- Longer term generation
- Structure
- Translation
- Interpolation (morphing)
- Averaging of some points
- Addition or subtraction of an attribute vector capturing a given characteristic

 This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic)

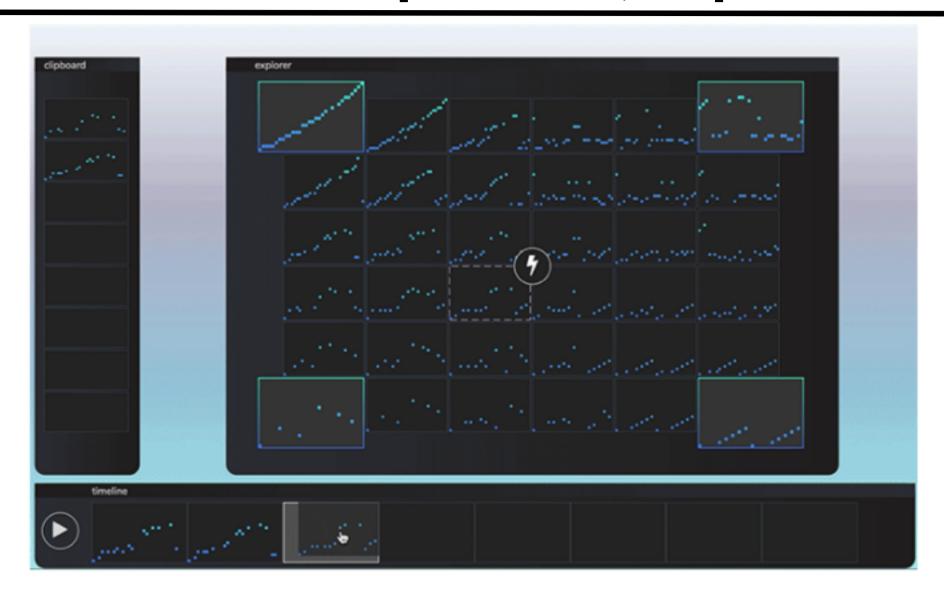


## BeatBlender in TensorFlow.js MusicVAE [Roberts et al., 2018]



https://experiments.withgoogle.com/ai/beat-blender/view/

## LatentLoops in TensorFlow.js MusicVAE [Roberts et al., 2018]



https://teampieshop.github.io/latent-loops/