Deep Learning Techniques for Music Generation (7)

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université – CNRS

Programa de Pós-Graduação em Informática (PPGI)

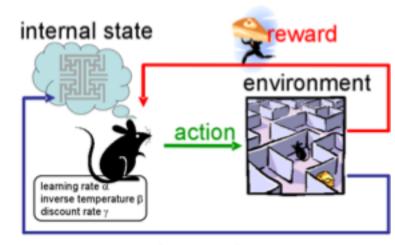
UNIRIO

Reinforcement Learning

Reinforcement Learning [Sutton, 1984]

- Very Different Approach and Model (from Data Learning)
- Inspired from Behaviorist Psychology
- Based on Decisions/Actions
- (and States and Rewards)

Not Based on Dataset



observation

[Figure from Cyber Rodent Project]

Not Supervised (No Labels/No Examples of Best Actions)

Deep Learning – Music Generation – 2018

- Feedback (Delayed Rewards)
- Learning // Action (Trial and Error)

Incremental

The only stupid question is the one you never ask [Sutton]

Reinforcement Learning [Sutton, 1984]

- Exploration vs Exploitation Dilemna
- Temporal/Delayed Credit Assignment Issue
- Formal Framework: Markov Decision Process (MDP)
- Sequential Decision Making
- Objective: Learn Optimal Policy (Best Action Decision for each State) to Maximize Expected Future Return/Gain (Accumulated Rewards)
- = Minimize Regret (Difference between expected Gain and optimal Policy's Gain)

Melody Generation

Example of Model

State: Melody generated so far (Succession of notes)

Action: Generation of next note

Feedback: Listener, or Musical Theory Rules, or/and...

Evolutionary Algorithms, Genetic Algorithms and Programming

Could be Considered as an Approach for Reinforcement Learning [Pack Kaebling

et al. 1996]

Search in the Space of Behaviors

Selection based on Fitness

Fitness: Global/Final Reward

Off-Line Learning (Genotype -> Phenotype Generation)

- Evolutionary Algorithms
- Genetic Algorithms [Holland 1975]
- Genetic Programming [Koza 1990]
 - Phenotype (Tree structure) = Genotype
- Morphogenetic Programming [Meyer et al. 1995]

Fft(Derivation(InSignal), Max(Correlation (InSignal, Constant_Signal))

Fft

Deriv

Max

InputSignal Correlation

In Signal Constant_Signal

GROW(1,10,-1)

DRAW(5,10,2)

DIVIDE(8,5)

DIVIDE(8,5)

DIVIDE(8,5)

MI

MI

Crossover

Deep Learning – Music Generation – 2018

6

Mutation

Reinforcement Learning (RL)/MDP Basics [Silver 2015]

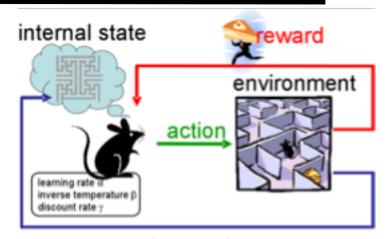
(at each step/time t)

Observation ot of the Environment

Action at by the Agent

Reward r_t from the Environment

positive or negative



observation

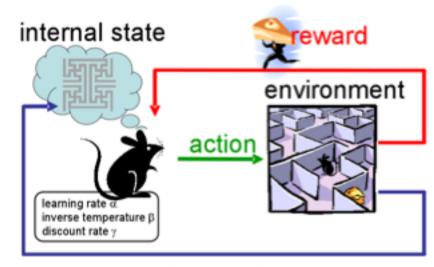
- History: Sequence of observations, actions, rewards
- $H_t = o_1, a_1, r_1, o_2, a_2, r_2, \dots, o_t, a_t, r_t$
- What happens next depends on this history
 - Decision of the agent
 - Observation of the environment
 - Reward by the environment
- Full history is too huge
- State: summary (what matters) of the history

$$s_t = f(H_t)$$

Reinforcement Learning (RL)/MDP Basics [Silver 2015]

Three Models of State [Silver 2015]:

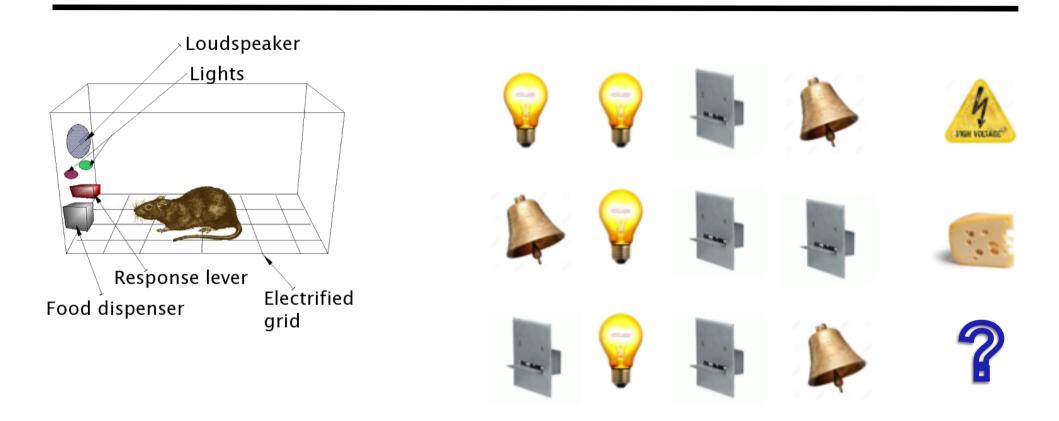
- Environment State
 - Environment private representation
 - Not usually visible to the agent nor completely relevant
- Agent State
 - Agent internal representation
- Information State (aka Markov State)
 - Contains useful information from the history



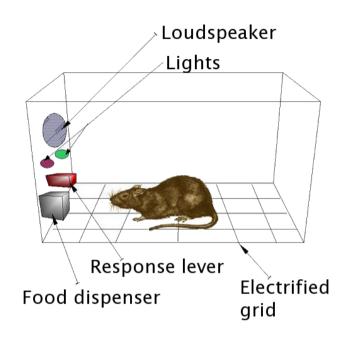
observation

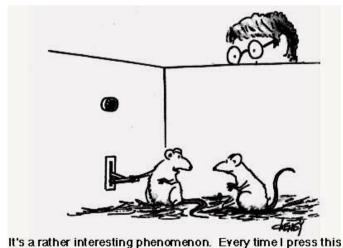
- Markov property: P[st+1 | st] = P[st+1 | s1, ..., st]
 - Future is independent of the past, given the present = History does not matter
 - State is sufficient statistics/distribution of the future
 - By definition, Environment State is Markov
- Fully or Partially Observable Environment
 - Full: Markov Decision Process (MDP) (Environment State = Agent State = Markov State)
 - Partial: Partially Observable Markov Decision Process (POMDP)
 - » Ex. of Representations: Beliefs of Environment, Recurrent Neural Networks...

Agent State (Representation Choice/Impact) [Silver 2015]



Agent State (Representation Choice/Impact) [Silver 2015]



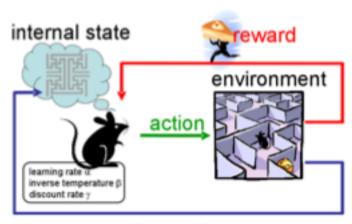


lever, that post-graduate student breathes a sigh of relief.

Agent State =

- last 3 items
- counts for lights, bells, levers
- **–** ...

Reinforcement Learning First Ad-Hoc/Naive Approaches



observation

- Greedy strategy
 - Choose the action with the highest estimated return
 - Limit: Exploitation without Exploration
- Randomized
 - Limit: Exploration without Exploitation
- Mix: ε-Greedy
 - ε probability to choose a random action, otherwise greedy
 - » ε constant
 - » or ε decreases in time from 1 (completely random) until a plateau
 - analog to simulated annealing

Reinforcement Learning Components [Silver 2015]

Value Function

Policy

Model



observation

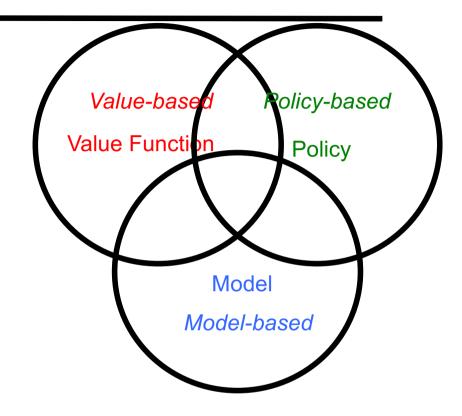
Three main components for RL [Silver 2015]:

- Policy
 - Agent behavior
 - $\pi(s) = a$ Function that, given a state, selects an action a
- Value Function
- Model
 - Representation of the environment

Main Approaches

Three main approaches for RL [Silver 2015]:

- Policy-based
- Value-based
- Model-based
- Policy-based
 - Search directly for Optimal Policy π*
- Value-based
 - Estimate the Optimal Value Q*(s, a)
 - Then choose Action with Highest Value function Q
 - \rightarrow TT(s) = argmax_a Q(s, a)
- Model-based
 - Learn (estimate) a Transition Model of the Environment E
 - \rightarrow T(s, a) = s'
 - \rightarrow R(s, a) = r
 - Plan Actions (e.g., by Lookahead) using the Model
- Mixed
 - Concurrent/Cooperative/Mutual Search/Approximations/Iterations
 Jean-Pierre Briot
 Deep Learning Music Generation 2018



Value Function(s)

State Value Function

- Value of the state
- Expected return
- V^{π} (st) = E^{π} [rt + γrt+1 + γ²rt+2 + γ³rt+3 + ...]
- Discount factor γ € [0 1] (Infinite Horizon Discounted Model)
 - » Uncertainty about the future (Life Expectancy + Stochastic Environment)
 - » Boundary of ∞ (ex: avoids infinite returns from cycles)
 - » Biological (more appetance for immediate reward :)
 - » Mathematically tractable
 - » $\gamma = 0$: short-sighted

Action Value Function

- Value of the state and action pair
- Q^π(s, a)
- $V^{\pi}(s) = Q^{\pi}(s, \Pi(s))$

Bellman Equation [Bellman 1957]

- value = instant reward + discounted value of next state
- $V^{\pi}(st) = E^{\pi}[rt + \gamma rt + 1 + \gamma^2 rt + 2 + \gamma^3 rt + 3 + ...] = E^{\pi}[rt] + \gamma V^{\pi}(st + 1)$
- $Q^{\pi}(st, at) = E^{\pi}[rt] + \gamma Q^{\pi}(st+1, at+1)$

Policy-based and Value-based Approaches

Policy-based

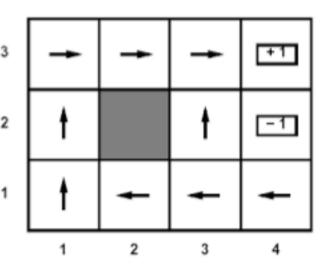
- Search directly for Optimal Policy π*
- On-Policy learning [Silver 2015]: Learn policy that is currently being followed (acted)
- Iterative Methods
 - » Monte-Carlo
 - Replace expected return with mean return (mean of samples returns)
 - » TD (Temporal Difference) [Sutton 1988]
 - Difference between estimation of the return before action and after action 2
 - On-line learning
 - TD(0)
 - TD(λ) (updates also states already visited λ times)

Value-based

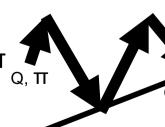
- Estimate the Optimal Value Q*(s, a)
- Then choose Action with Highest Value function Q
- $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$

Mix //

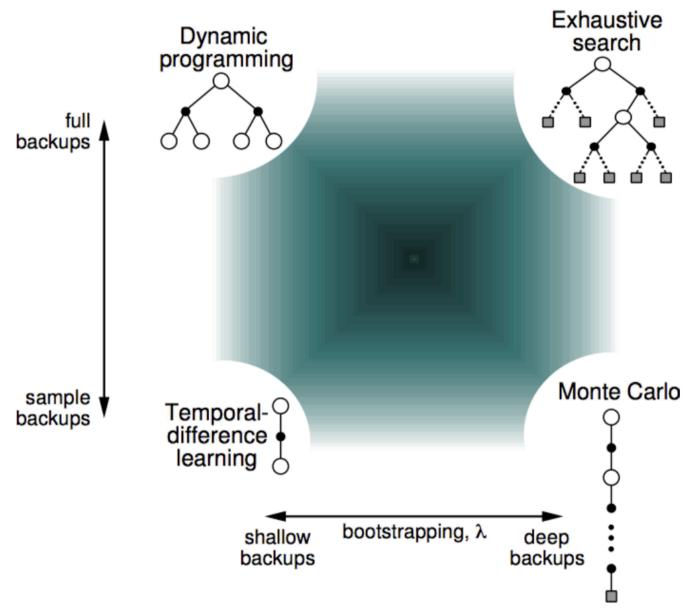
- Iterative Policy evaluation: TD or SARSA to Estimate Q from π
- Policy improvement: Select π via ε-greedy selection from Q
- Iterate π*



 $\Pi \rightarrow Q$



RL Algorithms Typology [Silver 2015]



RL Algorithms Typology [Silver 2015]

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \longleftrightarrow s,a$ r s' $q_{\pi}(s',a') \longleftrightarrow a'$	S,A R S' A'
Equation for $q_{\pi}(s,a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Jean-Pierre Briot

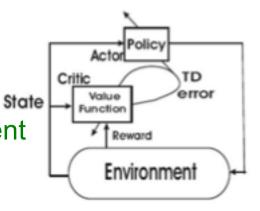
Deep Learning – Music Generation – 2018

Actor-Critic [Barto et al. 1983]

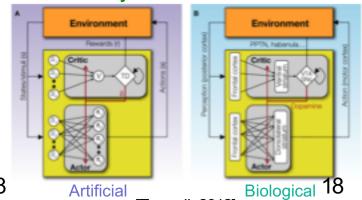
- Actor-Critic approach combines
 - Policy-based
 - Value-based

Actor Critic-based

Similar to Iterative Policy evaluation // Policy improvement



- Actor acts and learns Policy
 - Uses a RL Component
 - Tries to Maximize the Heuristic Value of the Return (Value), computed by the Critic
- Critic learns Returns (Value) in order to Evaluate Policy
 - Uses Temporal Difference (TD(0) Algorithm [Sutton 1988])
 - TD = Difference between estimation of the Return (Value) before Action and after Action
 - Learns Mapping from States to Expected Returns (Values), given the Policy of the Actor
 - Communicates the Updated Expected Value to the Actor
- Run in //
- Co/Mutual-Improvement
- Recent (Partial) Biological Corroboration
 Jean-Pierre Briot Deep Learning Music Generation 2018



[Tomasik 2012]

Off-Policy Learning and Q-Learning

- Off-Policy learning [Silver 2015]
 - Idea: Learn from observing self history (off-line) or from other agents
 - Advantage: Learn about a policy (ex: optimal) while following a policy (ex: exploratory)
 - Estimate the expectation (value) of a different distribution
- Q-Learning [Watkins 1989]
- Analog to TD // ε-greedy & Actor Critic but Integrates/Unifies them
 - Estimate Q and use it to define Policy
- Q-Table(s, a)
- Update Rule:

```
- Q(s, a) := Q(s, a) + α(r + \gamma \max_{a'}Q(s', a') - Q(s, a))
Q^*(s, a) = r + \gamma \max_{a'}Q(s', a')  Bellman equation
```

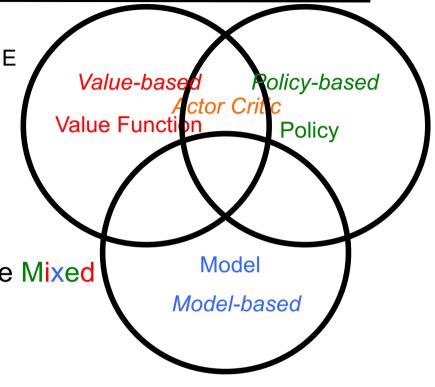
- Exploration insensitive
 - The Exploration vs Exploitation Issue will not affect Convergence
 Jean-Pierre Briot
 Deep Learning Music Generation 2018

Q-Learning Algorithm

```
initialize Q table(#states, #actions) arbitrarily; observe initial state s; repeat select and carry out action a; observe reward r and new state s; Q(s, a) := Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a));  update rule s := s'; until terminated
```

Model-Based Reinforcement Learning

- Model-based
 - Learn (estimate) a Transition Model of the Environment E
 - T(s, a) = s' or/and R(a, s) = r
 - (in //) Use the Model
 - » Plan Actions (e.g., by Lookahead) using the Model
 - » Or Adjust the Policy: Dyna [Sutton 1990]
 - Build Model and Adjust Policy (Mixed approach)
- Most of Current Models and Algorithms Used are Mixed
 - They use Mutual Cooperative Solutions, Ex:
 - Policy // Value
 - » Actor-Critic [Barto et al. 1983]
 - \Rightarrow SARSA ϵ -greedy
 - » Q-Learning [Watkins 1989]
 - Model // Policy
 - » Dyna [Sutton 1990]
 - They also have Variants (Optimizations, Extensions, Combinations...)
 - » Ex: Queue-Dyna, Prioritized Sweeping, RTDP, VRDP, Feudal Q-Learning...

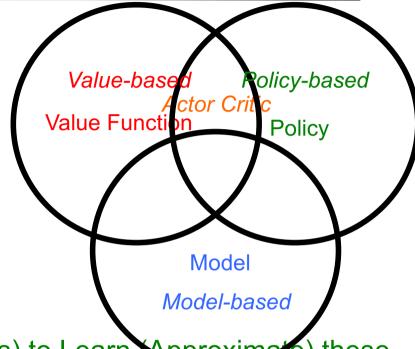


Model-Based Reinforcement Learning

- Q-Learning is the most known and is widely used
- Still, the user needs to adjust the exploration vs exploitation tradeoff
 - Ex: more exploration at the beginning
 - And more greedy at the end (once near convergence)
- There is No Best General Approach/Algorithm
- This Depends on Application/Scenario Characteristics
 - Information Known a priori (ex: Transition Model) vs None
 - Relative Computation vs Experience Costs (and Risks: ex: Death!)
 - Algorithm Complexity (Space and Time) vs Memory and Computing Power
 - Determinism vs Stochastic
 - Timing Constraints vs Near Optimality Convergence
 - Simplicity
 - Possibility of Incorporating Human Expertise

Storage/Memory Issue

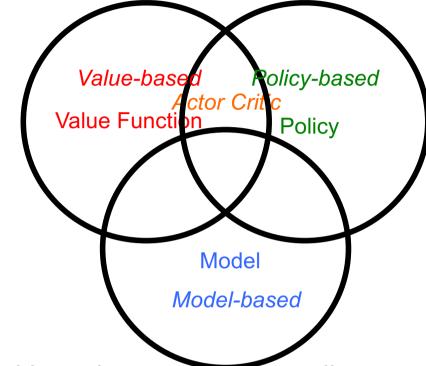
- Important Issue: Storing the Transition Model
 - It may be huge
- Same issue for other possible Mappings
 - Policies: s -> a
 - State value function: s -> R
 - Action value function: <s, a> -> R
 - **–** ...



- Use of Supervised Learning (ex: Neural Networks) to Learn (Approximate) these Mappings from Examples
 - REINFORCE [Williams 1987]
 - Recurrent Q-learning [Schmidhuber 1991]
 - TD-Gammon [Tesauro 1992]
 - » Neural Network with TD-Learning (TD-based, in place of Backpropagation)
 - » Expert level
 - » But tentatives to apply to other games were not successful... until...
 - » Success in Backgammon : finite game (reward info) and transitions sufficiently stochastic (exploration)

Deep Reinforcement Learning [Silver et al. 2013]

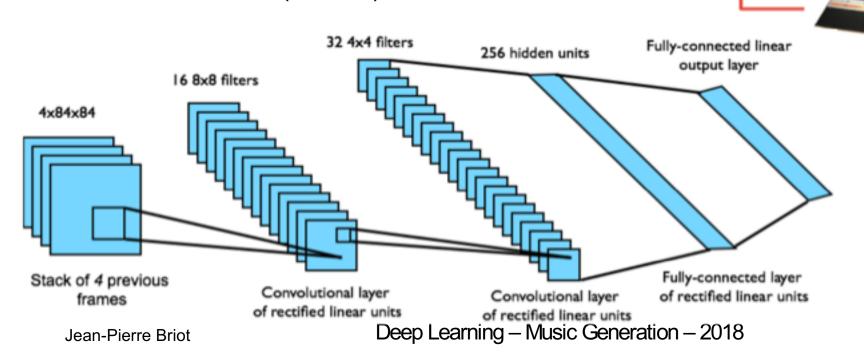
- Three main approaches for RL
 - Policy-basedValue-based
 - Model-based
- Use Deep Network to represent:
 - Policy
 - or Value
 - or Model



- Optimize it (Policy, or Value or Model) end-to-end by using stochastic gradient descent [Silver 2016]
- Ex: Deep Q-Learning [Minh et al. 2013]
- Represent Value function by a Deep Q-Network Q(s, a, w) ≈ Q^π(s, a)
- Train Value function Deep Network with inputs (<state,action> pairs) and outputs (values)

Deep Q-Learning [Minh et al. 2013]

- Atari Games Playing (DeepMind Technologies)
- Represent Value function as a Deep Q-Network
- Training of Value function Network
 - Inputs: Game screen raw pixels & joystick/button positions
 - Outputs: Q-values (captured from game play)
 - » Reward € {-1, 0, 1}
- On-Line Training through Game Play
- Works with ANY (ATARI) Game!



action

Q-Learning Algorithm [Watkins 1989]

```
initialize Q table(#states, #actions) arbitrarly;
observe initial state s;
repeat
select and carry out action a;
observe reward r and new state s;
Q(s, a) := Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a));
update rule s := s';
until terminated
```

New Deep Q-Learning Update Rule

- 1. feedforward pass for current state s to predict Q-values for all possible actions;
- 2. feedforward pass for next state s' and select largest Q-value: maxQ := maxa' Q(s', a');
- for the action corresponding to maxQ, set Q-value target to r + γ maxQ;
 for each other action, set Q-value target to Q-value predicted in step 1;
 (This means error will be 0 for them)
- 4. update the weights using backpropagation.

Deep Q-Learning Algorithm [Minh et al. 2013]

```
initialize Q table(#states, #actions) arbitrarly; observe initial state s; repeat select and carry out action a; observe reward r and new state s; feedforward pass for current state s to predict Q-values for all possible actions; feedforward pass for next state s and select largest Q-value: maxQ := maxa^rQ(s^r, a^r); for the action corresponding to maxQ, set Q-value target to r + \gamma maxQ; for each other action, set Q-value target to Q-value predicted in step 1; update the weights using backpropagation; s := s^r; until terminated
```

Deep Reinforcement Learning Algorithm [Minh et al. 2013]

(Main) Tricks/Optimizations:

1. Inputs/Outputs

- Input: the four last screens (images/pixels)
- Output: Q-values for each possible action

2. Experience Replay

- During game play, all experiences (<a, a, s', a'>) are stored in a replay memory
- During training, random minibatches form the replay memory are used
- Avoids similarity situation and favors exploration/generalization

2. ε-Greedy Exploration

- ε Probability to choose a random action, otherwise greedy (choose action with highest Q-value)
- ε decreases in time from 1 (completely random) until a plateau (0.1)
 - » analog to simulated annealing

Deep Search and Deep Reinforcement Learning

- Deep Search (and Deep Reinforcement Learning)
- AlphaGo Go Playing (Google DeepMind) [Silver et al. 2016]
- 2 Deep Networks to reduce search space
- "Policy Network" predicts next move and reduces width
- "Value Network" estimates winner in each position and reduces depth (analog to but better than alpha-beta pruning)
- Also Uses Reinforcement Learning to learn better policies,
- in order to improve the "Policy network",
- and in turn to improve the "Value Network"

AlphaGo 3 – 0 Ke Jie 27/05/2017

