Deep Learning Techniques for Music Generation 3. Generation by Feedforward Architectures

Jean-Pierre Briot

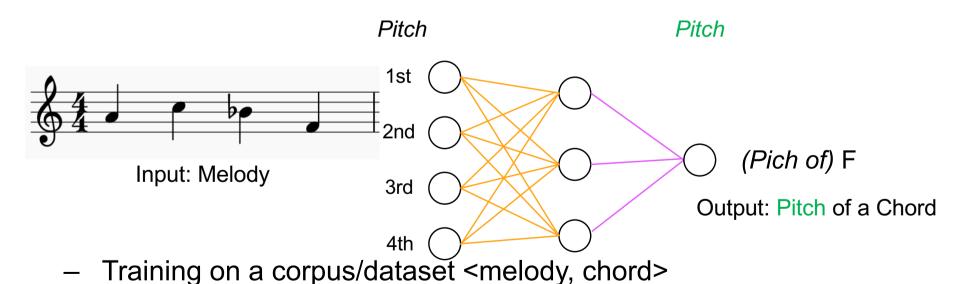
Jean-Pierre.Briot@lip6.fr

Laboratoire d'Informatique de Paris 6 (LIP6)
Sorbonne Université – CNRS

Programa de Pós-Graduação em Informática (PPGI)
UNIRIO

Direct Use – Feedforward – Ex 1

- Feedforward Architecture
- Prediction Task
- Ex1: Predicting a chord associated to a melody segment
 - scale/mode -> tonality



Production (Prediction)

Direct Use – Feedforward – Ex 1

- Feedforward Architecture
- Classification Task
- Ex1: Predicting a chord associated to a melody segment
- scale/mode -> tonality

 Pitch Class

 Pitch

 1st

 2nd

 3rd

 Und

 White Class

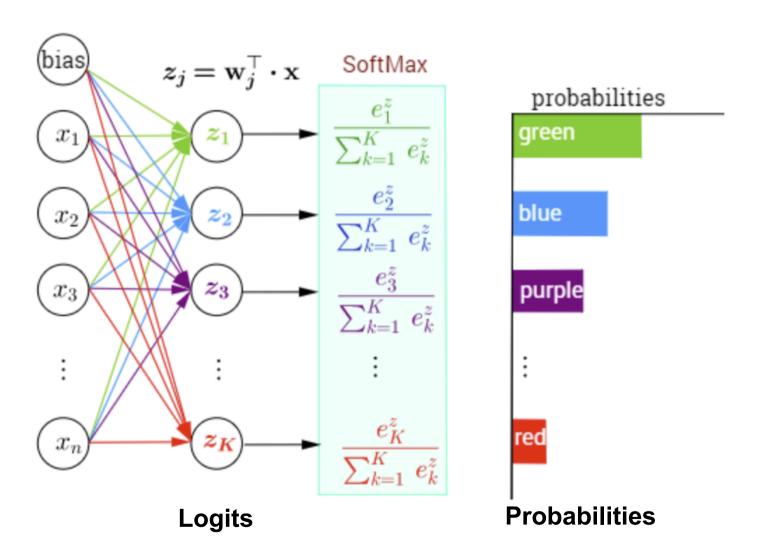
 Output: Chord (Pitch Class)

 White Class

 F

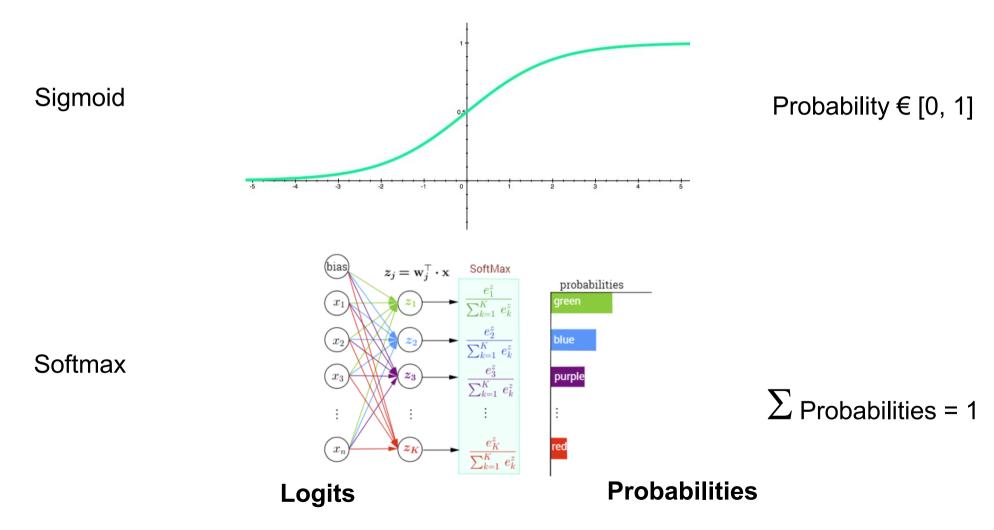
 Output: Chord (Pitch Class)
 - Training on a corpus/dataset <melody, chord>
 - Production (Classification)

Softmax



Softmax and Sigmoid

- Softmax is the generalization of Sigmoid
- From Binary classification to Categorical (Multiclass) classification

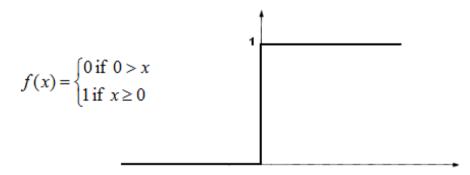


Softmax and Sigmoid

- Step function and Argmax are NOT differentiable
- No gradient -> No possibility of back propagation

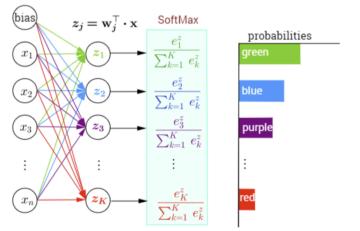
Unit step (threshold)

Step function (Perceptron)



Probability € {0, 1}

Argmax



Probability(Argmax) = 1

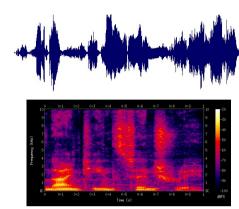
Logits

Probabilities

Representation

Audio

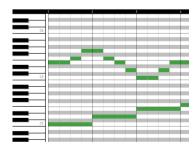
- Waveform
- Spectrogram (Fourier Transform)
- Other (ex: MFCC)



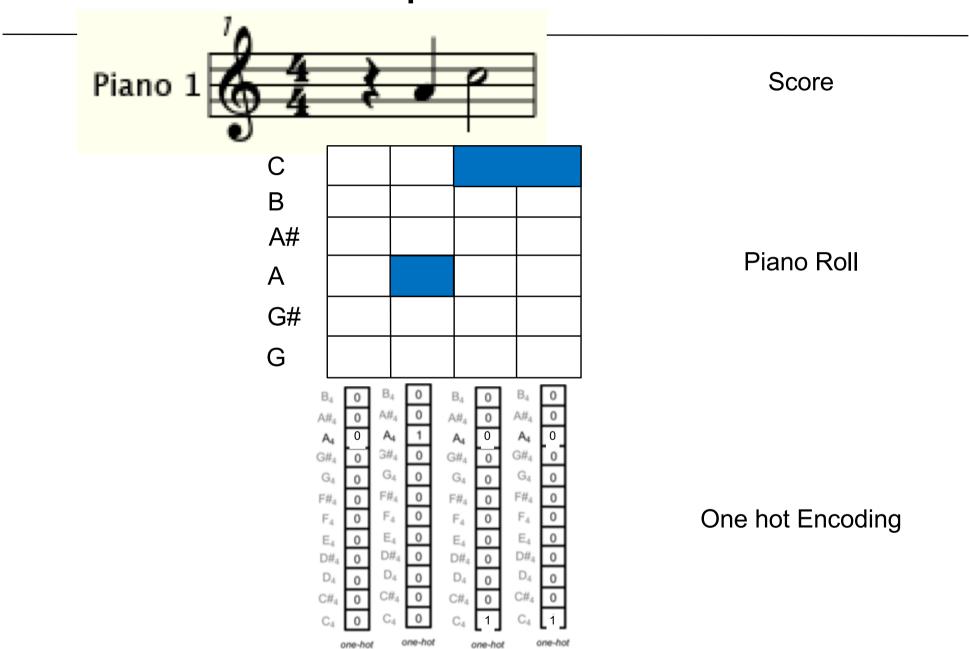
Symbolic

- Note
- Rest
- Note hold
- Duration
- Chord
- Rhythm

- Piano Roll
- MIDI
- ABC, XML...

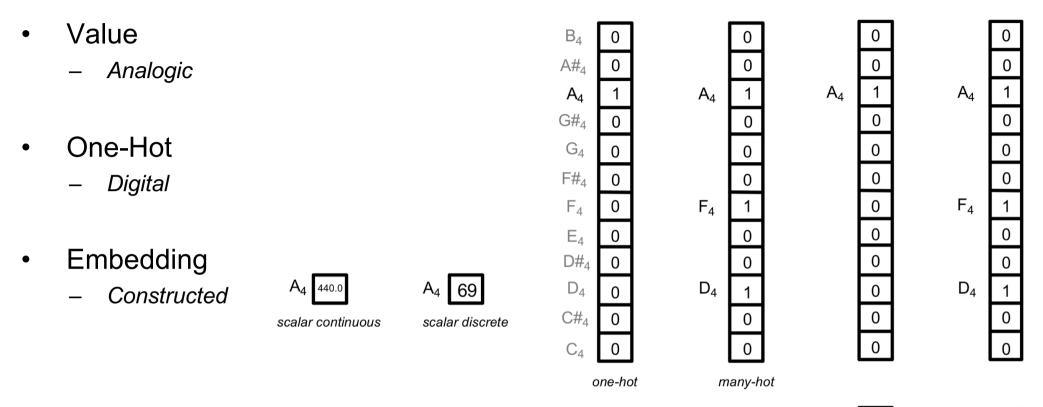


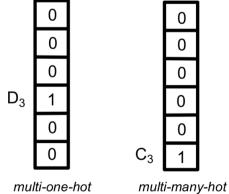
Representation



Deep Learning – Music Generation – 2019

Encoding of Features (ex : Note Pitch)





Encoding

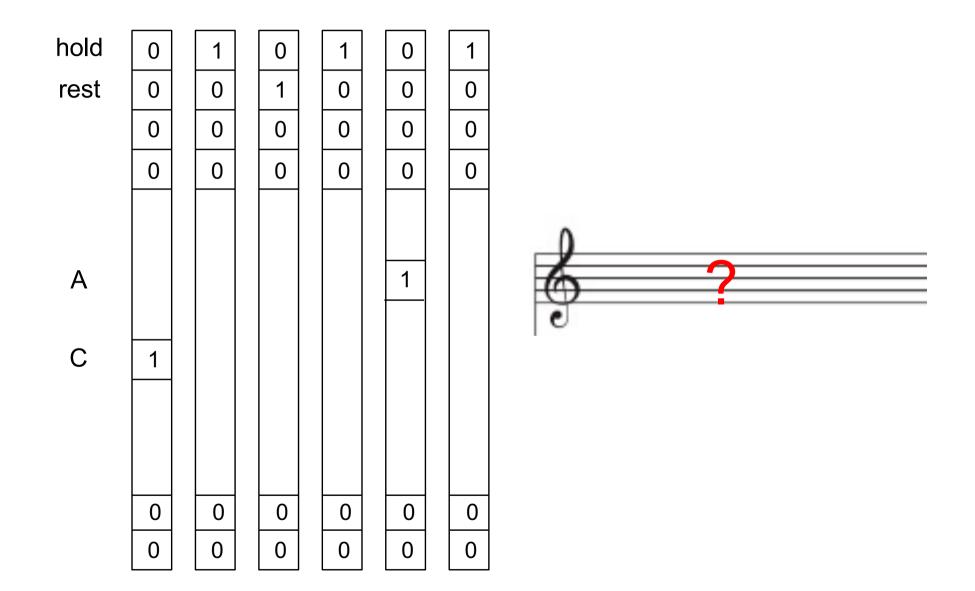
Rest

- Zero-hot
 - » But ambiguity with low probability notes
- One more one-hot element
- **–** ...

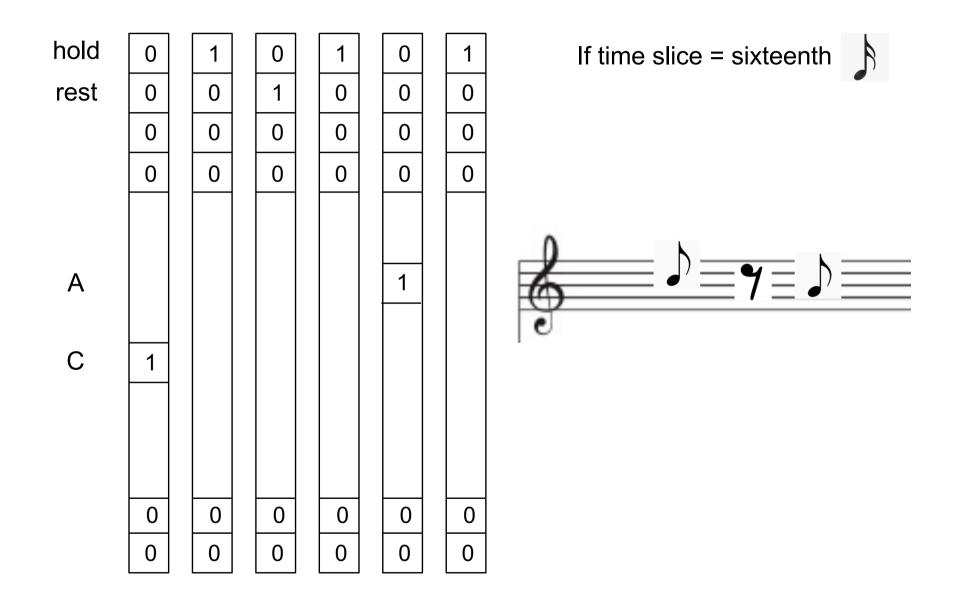
Hold

- One more one-hot element
 - » But only for monophonic melodies
- Replay matrix
- ..

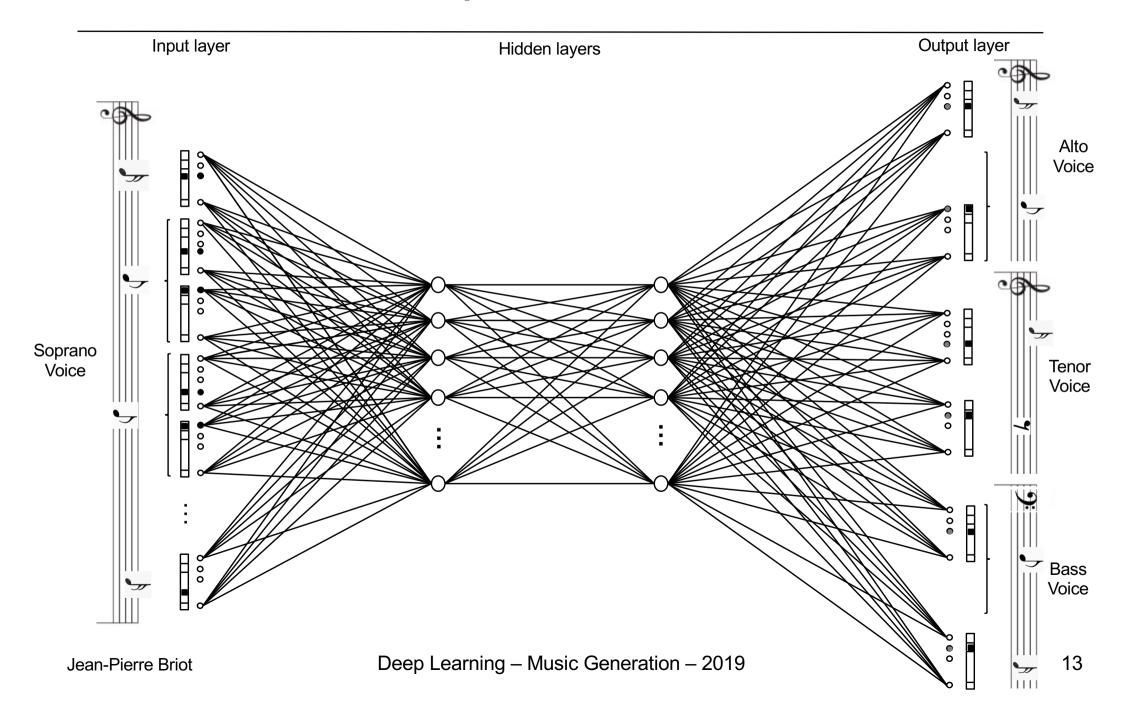
Representation



Representation



Music / Representation / Network



Code

Keras

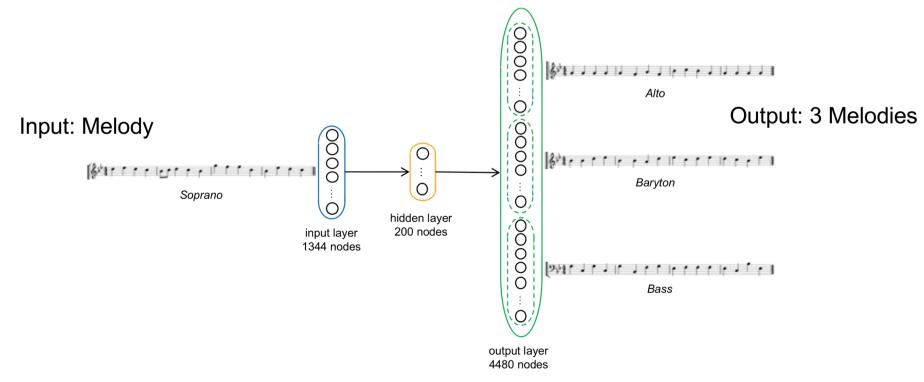
Theano theano or TensorFlow

Music21 music21

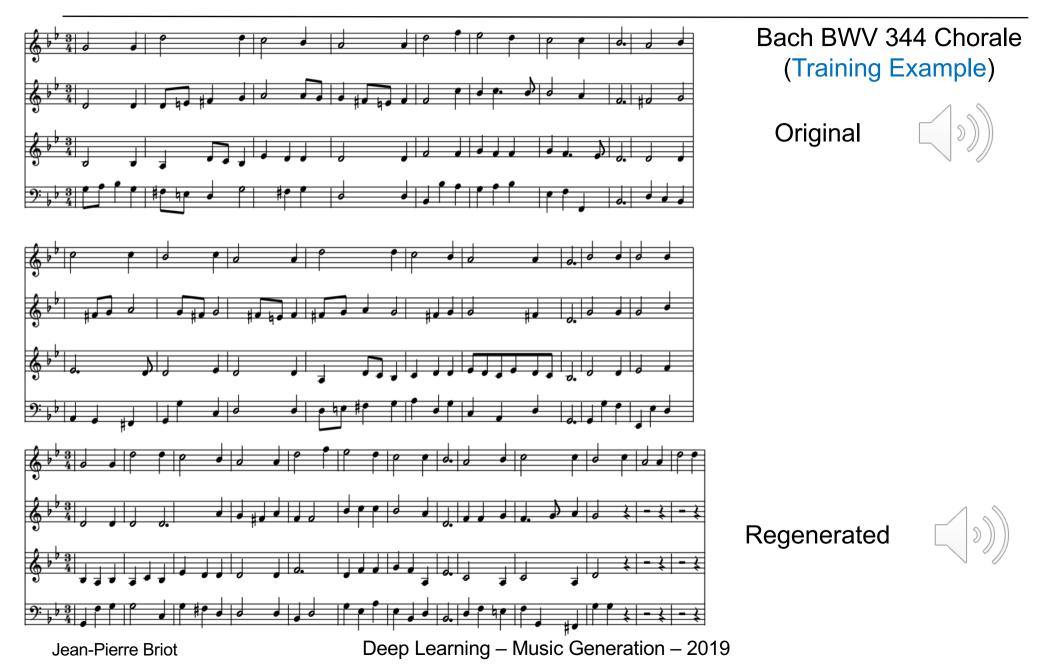
Direct Use – Feedforward – Ex 2: ForwardBach

- Feedforward Architecture
- Prediction Task
- Ex2: Counterpoint (Chorale) generation

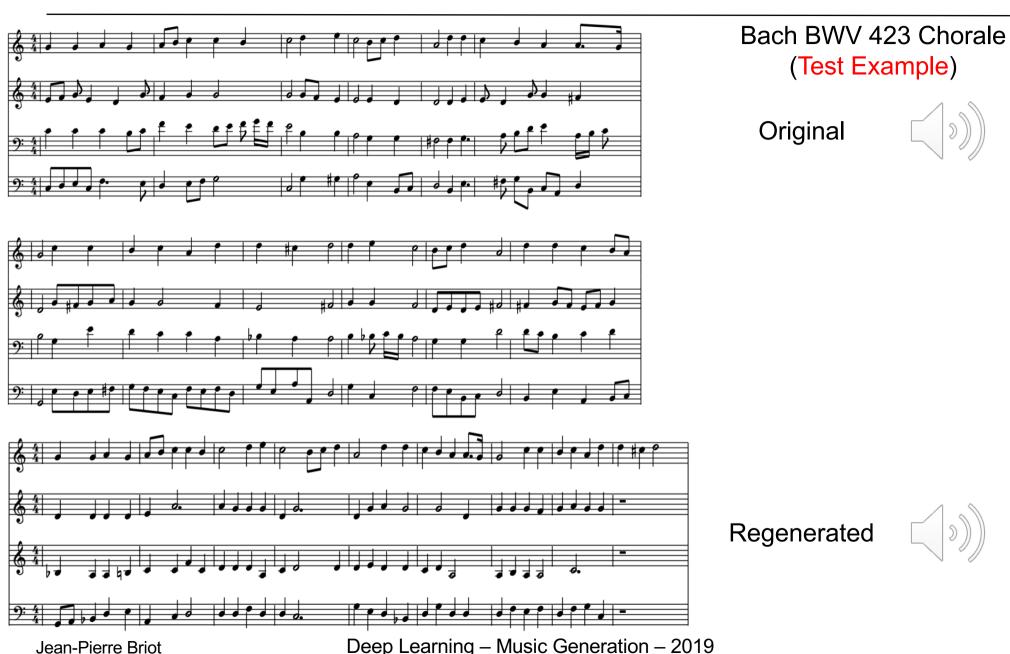
Training on the set of (389) J.S. Bach Chorales (Choral Gesang)



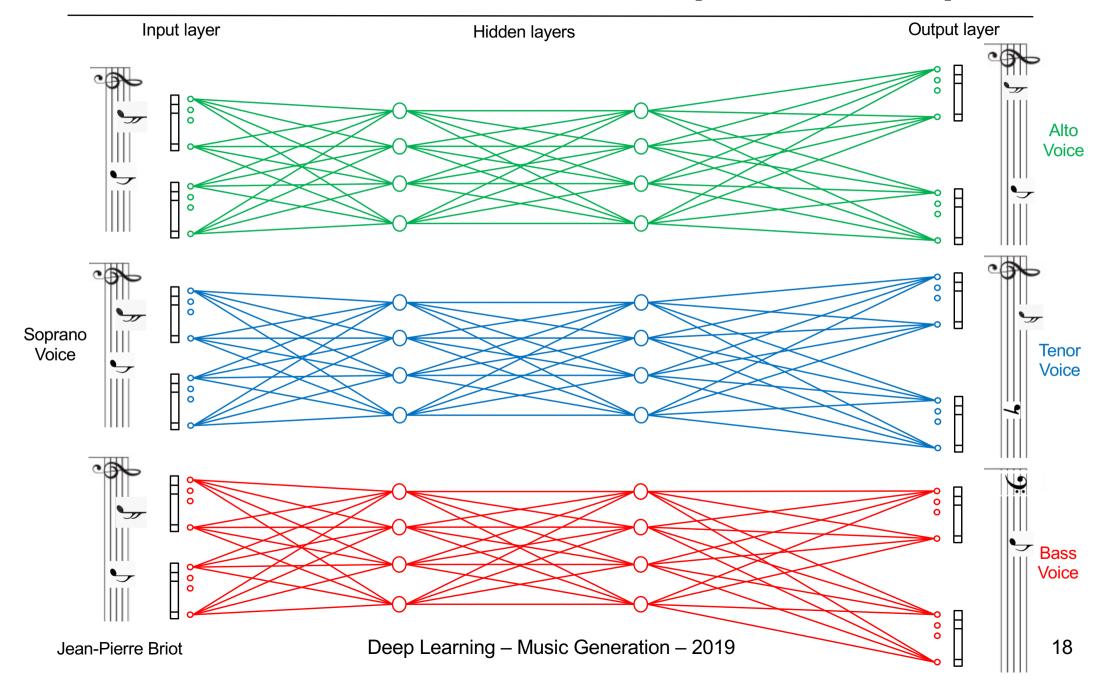
ForwardBach



ForwardBach



Music / Representation / Network Alternative 3 Models Architecture [Cotrim & Briot, 2019]



Forward3Bach [Cotrim & Briot, 2019]

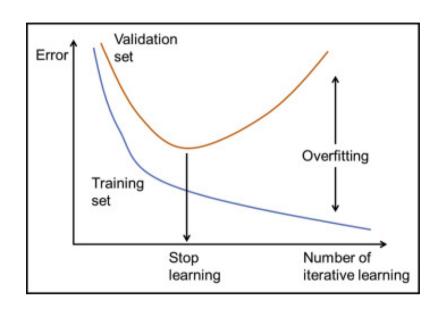
Comparison? What happened?

Overfitness Limitations

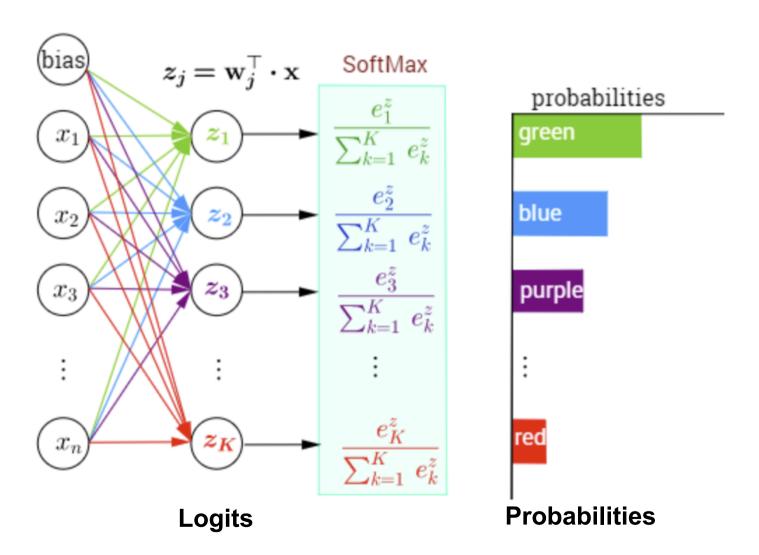
- Musical accuracy is not that good (yet)
- Regeneration of training example is better than Regeneration of test/validation example
- Case of Overfitness

Techniques

- Limit Accuraccy and Control Overfitness
- More Examples (Augment the Corpus)
 - Keeping a Good Style Representation, Coverture and Consistency
 - More Consistency and Coverture
 - Transpose (Align) All Chorales to Only One Key (ex: C)
- More Synthetic Examples
 - More Coverture
 - Transpose All Chorales in All Keys (12)
- Regularization
 - Weight-based
 - » L1, L2
 - Connexion-based
 - » Dropout
 - Epochs-based
 - » Early-Stop
 - Analysis of Learning Curves

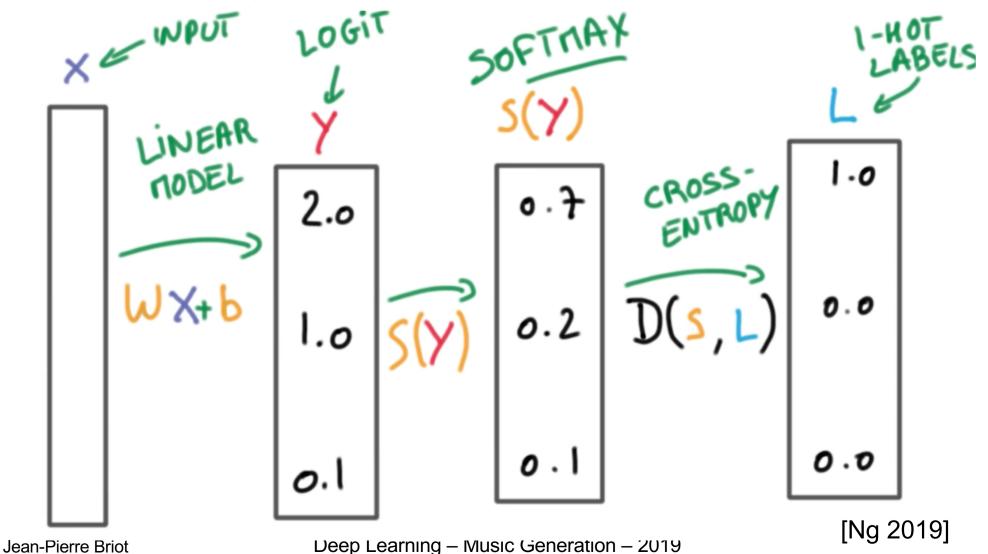


Softmax



Softmax + Cross-Entropy

 Cross-Entropy measures dissimilarity between two probability distributions (prediction and target/true value)



Task		Encoding of the target (y)	Output activation function	Cost (loss)	Application
Regression	Real	IR .	Identity (Linear)	Mean squared error	
Classification	Binary	$\{0, 1\}$	Sigmoid	Binary cross-entropy	
Classification	Multiclass single label	One-hot	Softmax	Categorical cross-entropy	Monophony
Classification	Multiclass multilabel	Many-hot	Sigmoid	Binary cross-entropy	Polyphony
Multiple Classification	Multi Multiclass single label	Multi One-hot	Sigmoid Multi Softmax	Binary cross-entropy Multi Categorical cross-entropy	Multivoice

Ex. multiclass single label: Classification among a set of possible notes for a monophonic melody, with only one single possible note choice (single label)

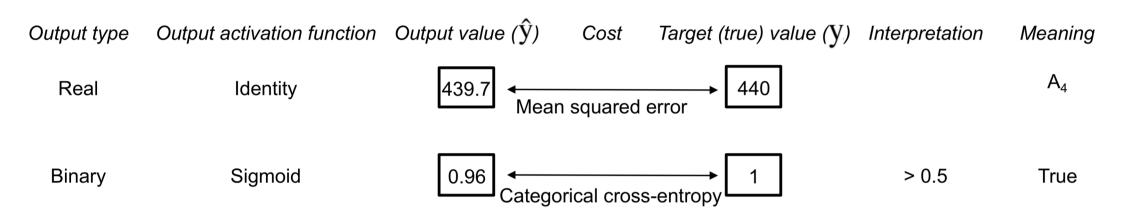
Ex. multiclass multilabel: Classification among a set of possible notes for a single-voice polyphonic melody, therefore with several possible note choices (several labels)

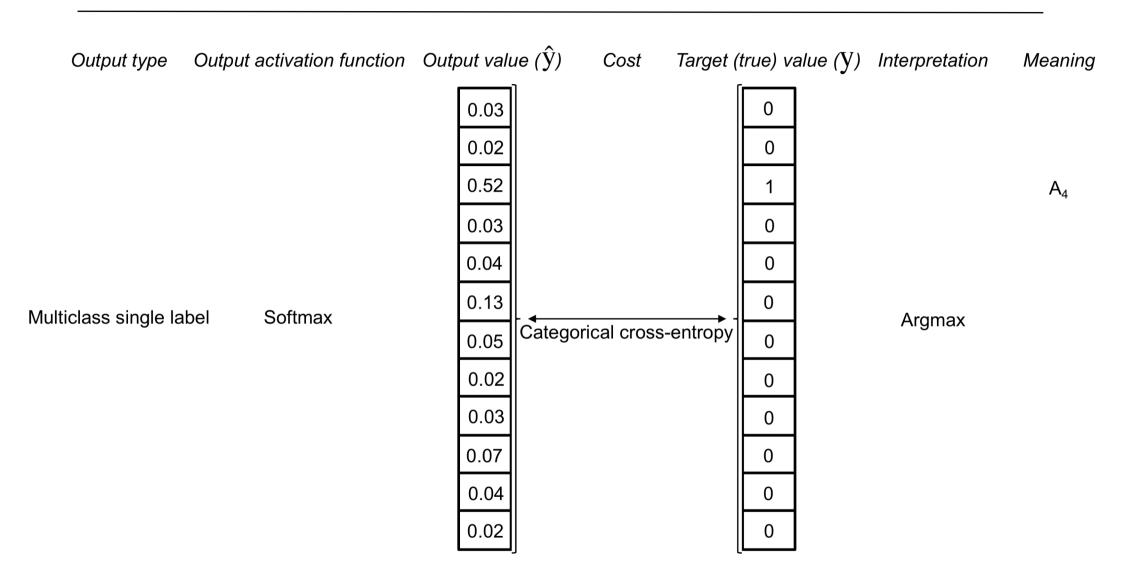
Ex. multi multiclass single label: Multiple classification among a set of possible notes for multivoice monophonic melodies, therefore with only one single possible note choice for each voice; Multiple classification among a set of possible notes for a set of time slices for a monophonic melody, therefore for each time slice with only one single possible note choice

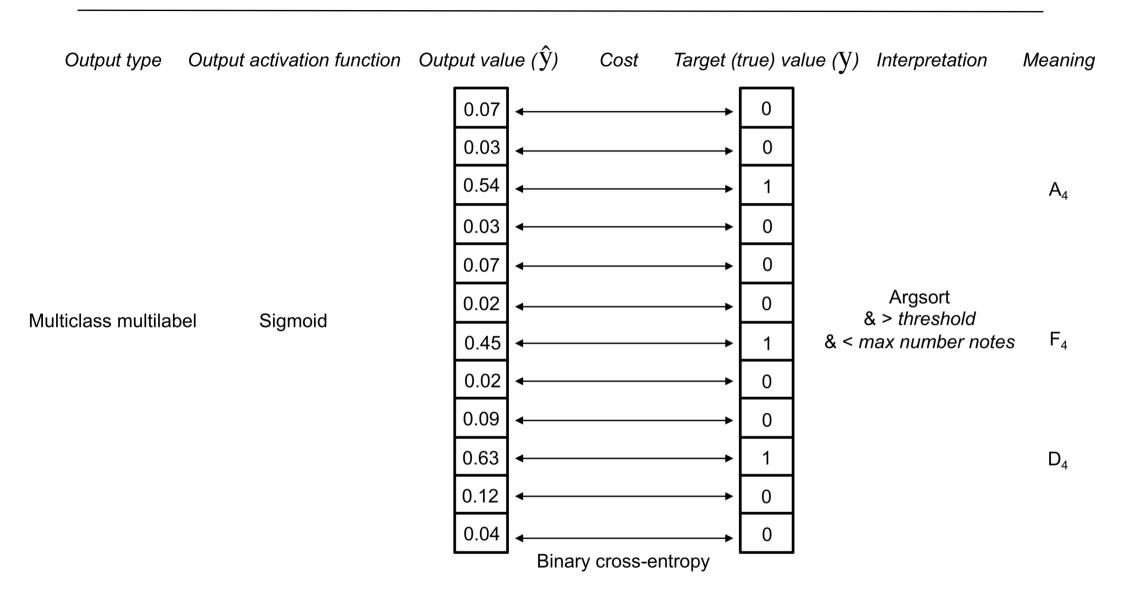
Task		Encoding of the target (y)	Output activation function	Cost (loss)	Interpretation
Regression	Real		P	Mean squared error	none
Classification	Binary	$\{0, 1\}$	Sigmoid	Binary cross-entropy	none
Classification	Multiclass single label	One-hot	Softmax	Categorical cross-entropy	argmax or sampling
Classification	Multiclass multilabel	Many-hot	Sigmoid	Binary cross-entropy	argsort and > threshold & max-notes
1	Multi Multiclass single label	One-hot	Multi	Binary cross-entropy Multi Categorical cross-entropy	p argmax or sampling

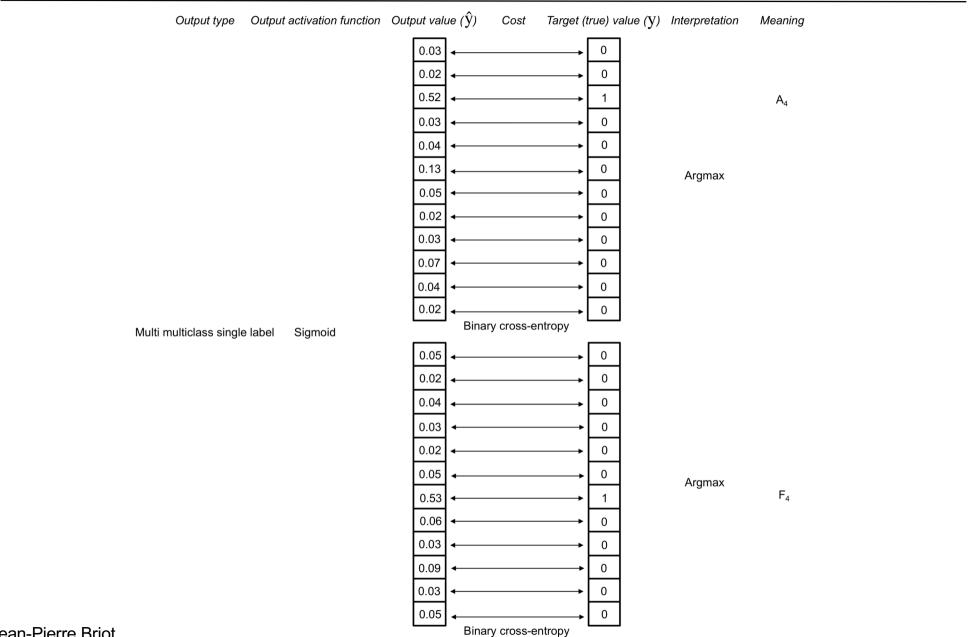
Other cost functions:

Mean absolute error, Kullback-Leibler (KL) divergence...









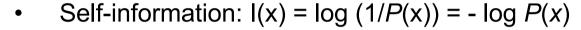
Jean-Pierre Briot

(Summary of) Principles of Loss Functions

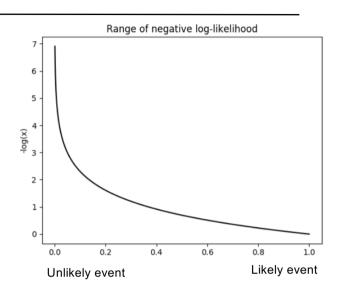
Probability theory + Information theory

See also Maximum likelihood principle

- Intuition:
 - Information content (Likely Event): Low
 - Information content (Unlikely Event): High



• Ex: I(note=B) = - log *P*(note=B)



- Entropy of Probability distribution : Σ_{i} I(note=Note_i), weighted by *P*(note=Note_i)
- $H(note) = \sum_{i} P(note = Note_{i}) I(note = Note_{i})$
- Expectation-based alternative definition:
- Expectation: Mean value of f(x) when $x \sim P$: $E_{x \sim P}[f(x)] = \sum_{x} P(x) f(x)$
- $H(note) = E_{note\sim P} I(x) = E_{note\sim P} [-log P(note)] = -E_{note\sim P} [log P(note)]$

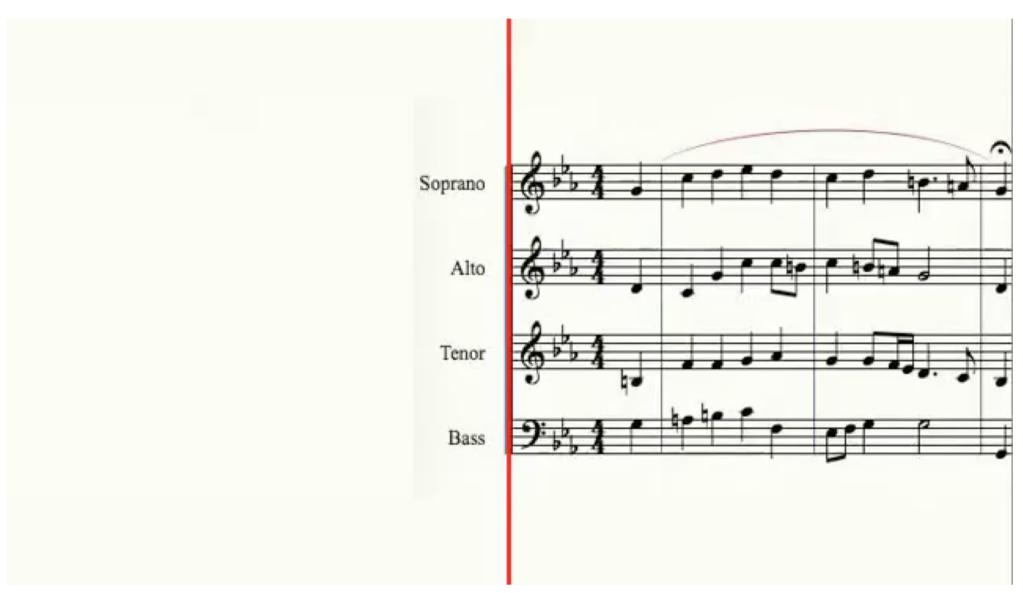
KL-Divergence and Cross-Entropy

- Measures of Differences between Distributions (over a same variable: note)
 - Assymetric $D_{KB}(P||Q) = = D_{KB}(Q||P)$ H(P,Q) = = H(Q,P)
- Kullback-Leibler Divergence (KL- Divergence):
- $D_{KB}(P||Q) = E_{\text{note}\sim P} [\log P(\text{note})/Q(\text{note})] = E_{\text{note}\sim P} [\log P(\text{note}) \log Q(\text{note})]$
- Categorical Cross-Entropy:
- $H(P,Q) = E_{\text{note}\sim P} [-\log Q(\text{note})] = -E_{\text{note}\sim P} [\log Q(\text{note})]$
- Difference with KL-Divergence: log P(note) term, constant with respect to Q
- $D_{KB}(y||\hat{y}) = E_{\text{note}\sim P} [\log y \log \hat{y}] = \sum_i y_i (\log y_i \log \hat{y}_i)$
- $H(y, \hat{y}) = -E_{\text{note} \sim P} [\log \hat{y}] = -\sum_{i} y_{i} \log \hat{y}_{i}$
- Binary Cross-Entropy:
- $H_B(y, \hat{y}) = -(y_0 \log \hat{y_0} + y_1 \log \hat{y_1}) = -(y \log \hat{y} + (1-y) \log (1-\hat{y}))$ Jean-Pierre Briot Deep Learning – Music Generation – 2019

ForwardBach Brazilian Hymn Counterpoint

ForwardBach Brazilian Hymn Counterpoint (2 times slower and removing the intro)

DeepBach – Demo [Hadjeres, 2017]



Reorchestration of God Save the Queen by DeepBach [Hadjeres, 2018]

https://www.youtube.com/watch?time_continue=1&v=x-W0ixD9Cpg