Deep Learning Techniques for Music Generation Autoencoder (4)

Jean-Pierre Briot

Jean-Pierre.Briot@lip6.fr

Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université – CNRS

Programa de Pós-Graduação em Informática (PPGI)
UNIRIO

Deep Learning for Music Generation – Technical Challenges

1. Ex Nihilo Generation

» vs Accompaniment (Need for Input)

2. Length Variability

» vs Fixed Length

3. Content Variability

» vs Determinism

4. Control

» ex: Tonality conformance, Maximum number of repeated notes...

5. Structure

6. Originality

» vs Conformance

7. Incrementality

» vs Single-step or Iterative Generation

8. Interactivity

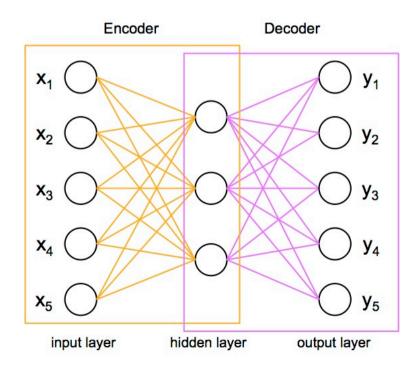
» vs (Autistic) Automation

9 Explainability

#1 Limitation – Generation (Without or With Minimal Input)

- #1 Partial Solution
- Via Decoding (Autoencoder)
 - » Ex: DeepHear [Sun, 201X]

Autoencoder



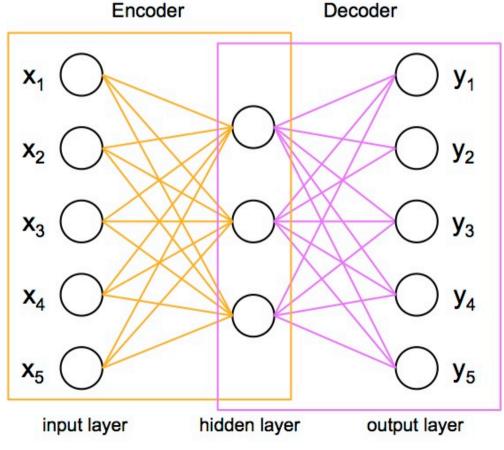
Neural Network with Input Layer = Output Layer

Diabolo shape

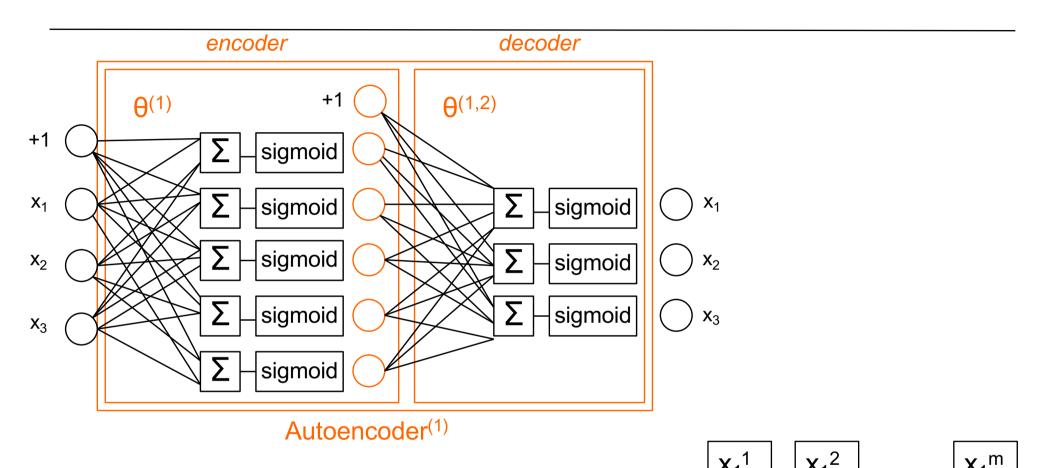
- Self-Supervised Training
 - Output = Input
 - Learning Identity
 - Learns to compress and reconstruct data
 - Extracts significant/discriminating features

Autoencoder

- Symmetric Neural Network
- Trained with examples as input and output
- Hidden Layer will Learn a Compressed Representation at the Hidden Layer (Latent Variables)



Autoencoder Self-Supervised Training



• Training (finding $\theta^{(1)}$ and $\theta^{(1,2)}$) on Input Dataset : $X: \begin{bmatrix} x_1 \\ x_2^1 \\ x_3^1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^2 \\ x_3^2 \end{bmatrix} \cdots \begin{bmatrix} x_1 \\ x_2^m \\ x_3^m \end{bmatrix}$

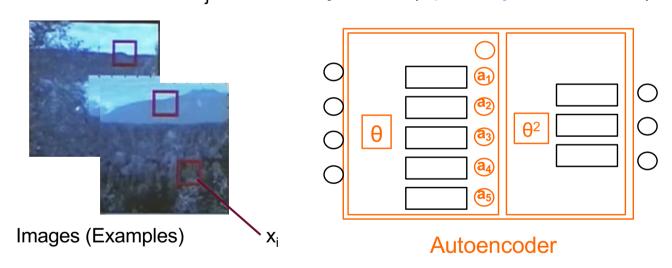
Self-Supervised Training implemented through Supervised Training

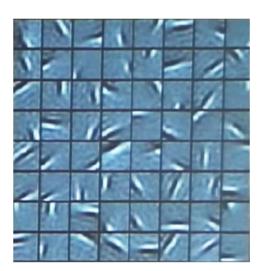
with Output = Input : X : Learn Identity with Sparsity Constraint [Ng 2012]

Sparse Autoencoder Learning Features

- Sparse Autoencoding [Olshausen & Field, 1996] [Ng, 2012]
- Originally developed to explain early visual processing in the brain (edge detection)
- Learns a Dictionary of bases $\Phi_1, \ldots \Phi_k$ so that each input can be approximately decomposed (recomposed) as: $x \approx_{j=1}^k \Sigma \ a_j \ \Phi_j$

such as a_i are mosty zero (sparsity constraint)



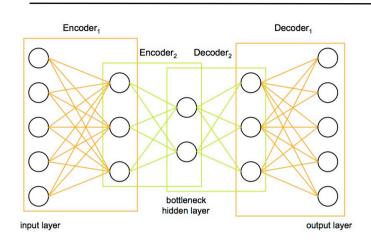


Features: $\Phi_1, \dots \Phi_k$

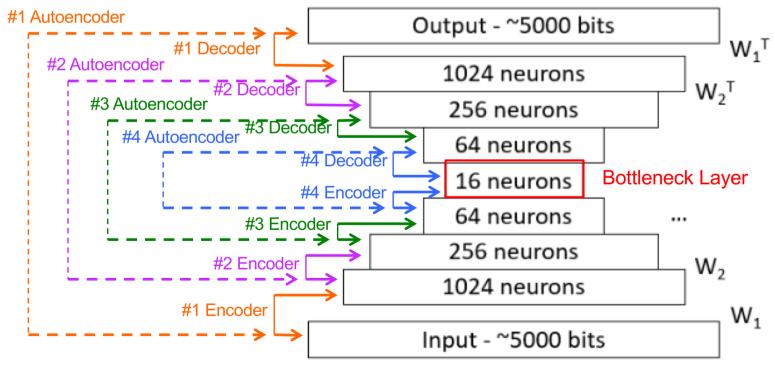
- "Invents" (learns) higher level features (e.g., edges)
- Sparsity forces specialization (feature detector) of each unit
- Alternative Non supervised learning architectures, e.g., Restricted Boltzman Machines (RBM) [Smolensky 1986] [Hinton et al. 2006]
 Jean-Pierre Briot Deep Learning – Music Generation – 2019

[Ng, 2013]

#1 Limitation – Generation – #1 Partial Solution – Stacked Autoencoders



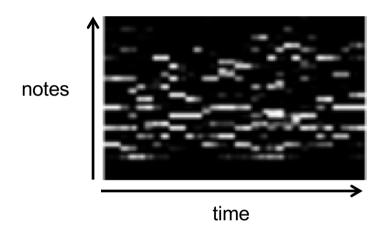
DeepHear Architecture [Sun, 2016]



Ex1: DeepHear [Sun, 2016]

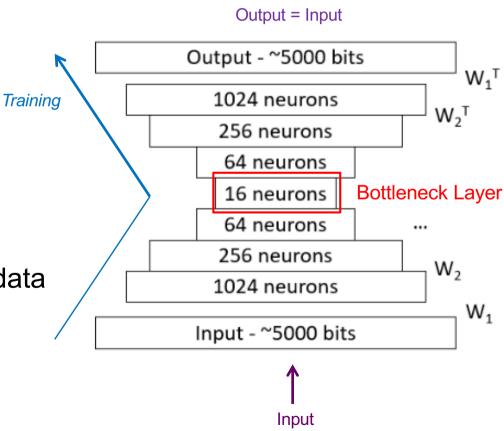
1. Pre-Training in Cascade (Layer by Layer)

- Dataset: 600 Ragtimes (Scott Joplin)
- Representation: Pianoroll



2. Self-Supervised Training

- Learns to compress and reconstruct data
- Extracts Features
- Bottleneck Layer = 16 neurons



DeepHear

3. Generation

- Input Random Data into 16 Neurons Middle Layer
- Melody: Output of the Higher Layer Decoder



https://fephsun.github.io/2015/09/01/neural-music.html

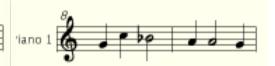
Auto(Encoder)Bach

Label elements all 0

Corpus:

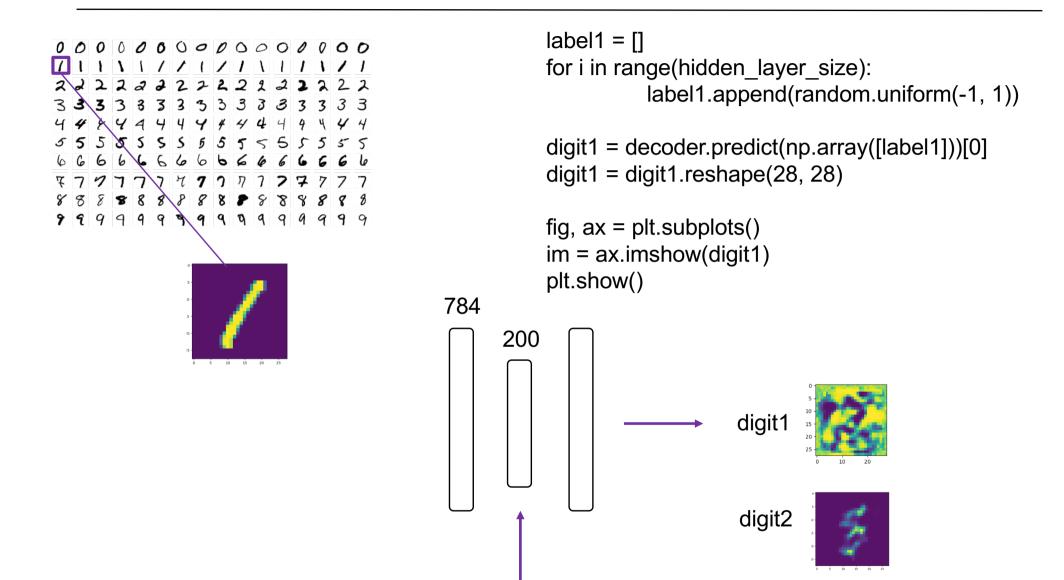
Soprano parts of Bach Chorales

Label elements all 1



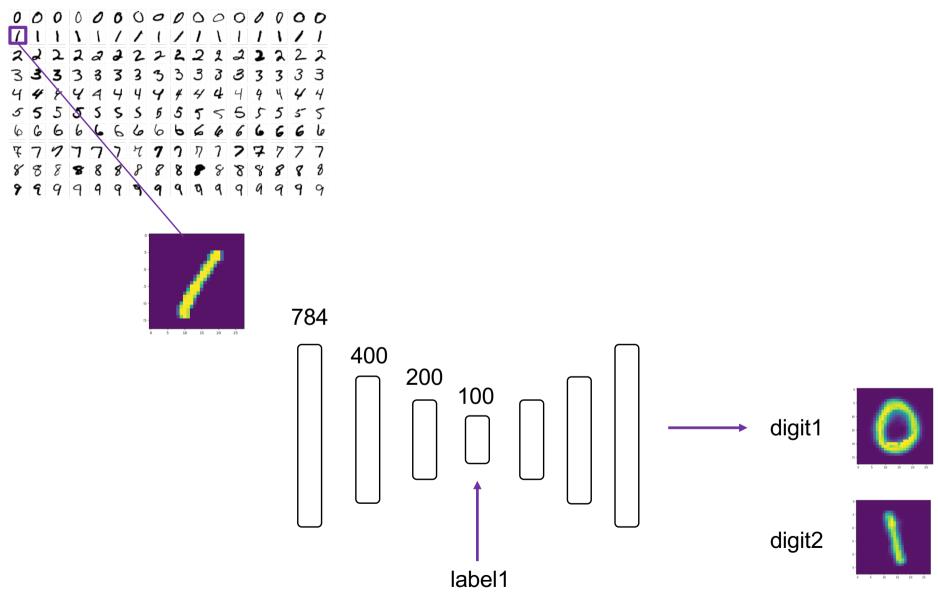
Label elements random [0, 1]

Autoencoder MNIST (Handwritten Digits)



label1

Autoencoder MNIST (Handwritten Digits)

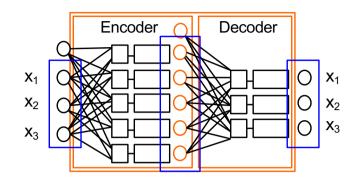


Other Example – Creating Non-Digits

New Types Generation [Kazakçi et al., 2016]

1. Create a Sparse Autoencoder

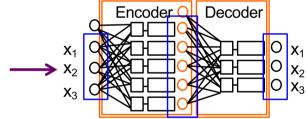
Convolutional Autoencoder
 (3 Encoding Layers; 1 Decoding Layer)



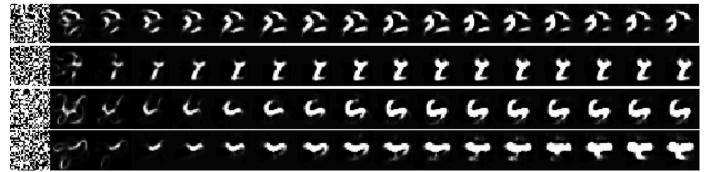
2. Train it on Objects Dataset

Hand Written Digits: MNIST dataset [Lecun & Cortes, 2012]

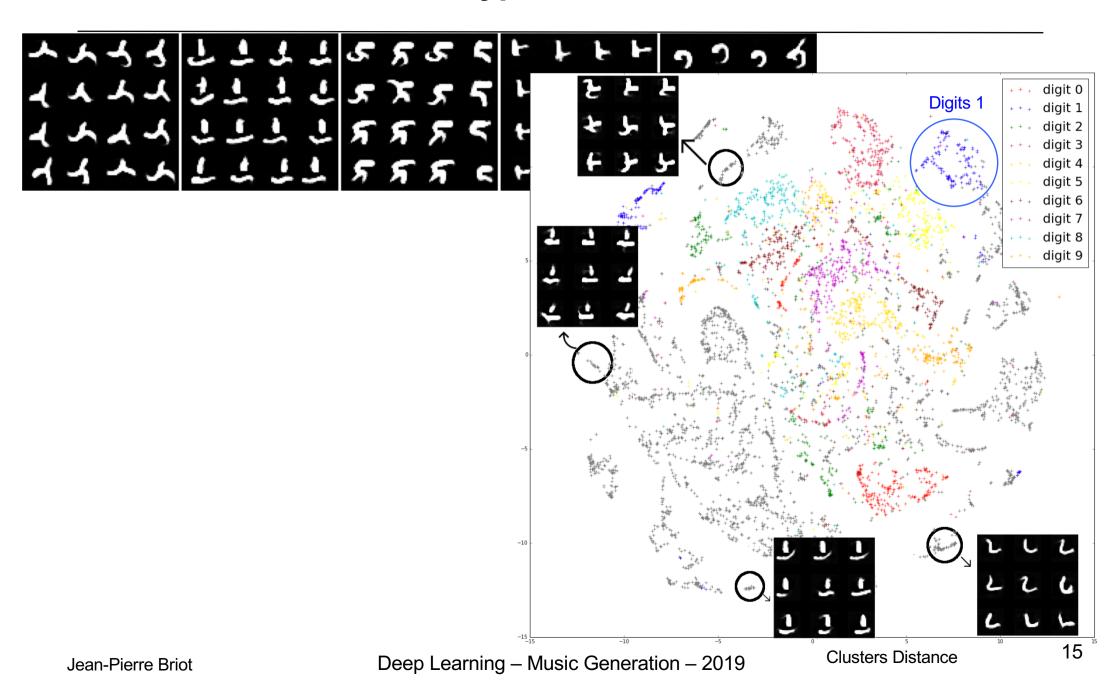
- 3. Feed Forward Random Image into Autoencoder
 - Output Image is Degraded but Features Emerge



Reiterate Feeding in Autoencoder with Output as Input until Fixed Point



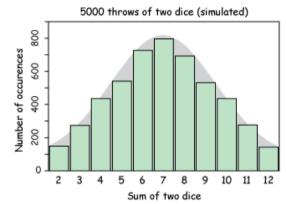
New Types Generation



Variational Autoencoder

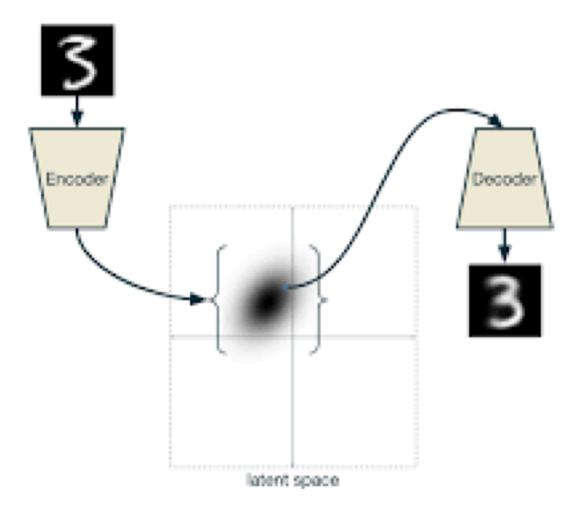
Variational Autoencoder (VAE) [Kingman & Welling, 2014]

- Constraint:
- Encoded representation (latent variables z) follow some prior probability distribution p(z), usually, a Gaussian distribution (normal law)



- Non optimized implementation:
- Adding a specific term to the cost function, by computing the cross-entropy between the values of the latent variables and the prior distribution
- The VAE decoder part will learn the relation between a Gaussian distribution of the latent variables and the learnt examples
- A VAE is able to learn a smooth latent space mapping to realistic examples

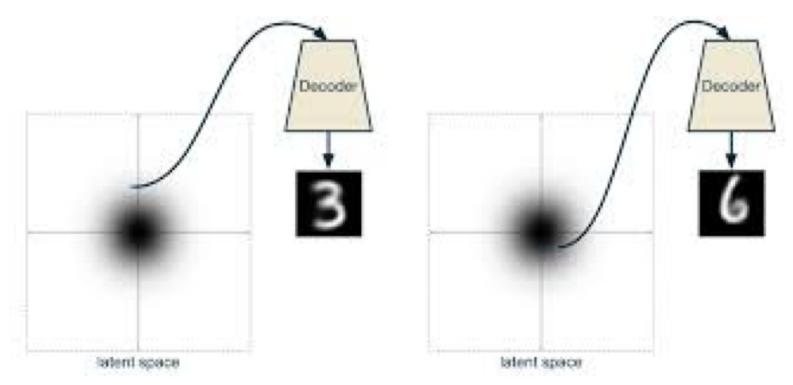
Variational Autoencoder



[Dykeman, 2016]

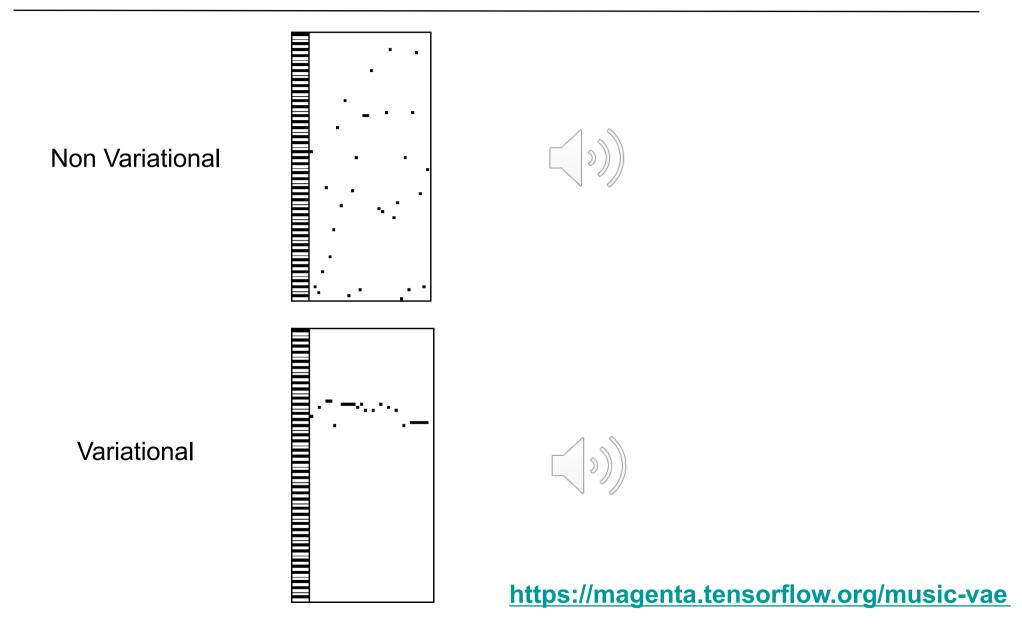
Variational Autoencoder

Generation by Exploring the Latent Space and Decoding



[Dykeman, 2016]

VAE vs AE Generation (MusicVAE [Roberts et al., 2018])



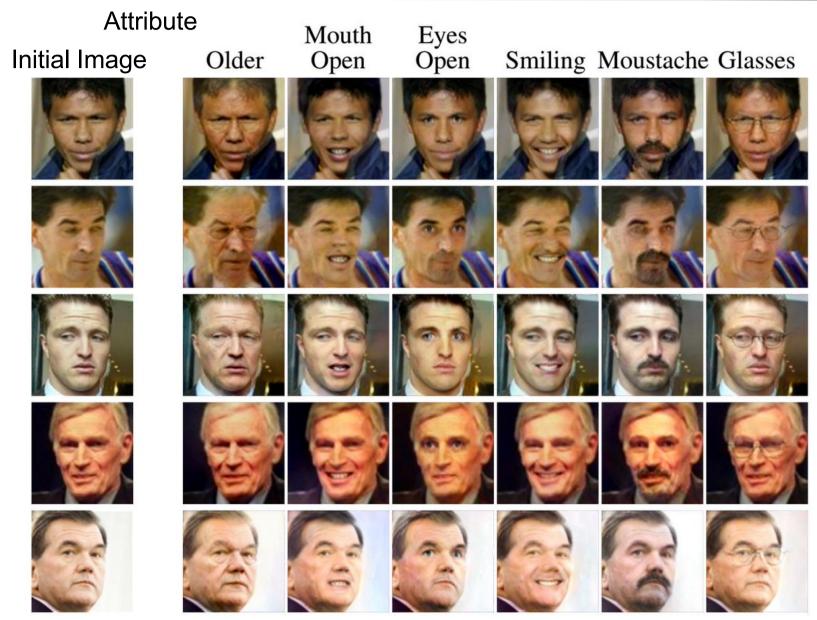
Variational Generation

Exploration of the latent space with various operations to control/vary the generation of content

Ex:

- Translation
- Arbitrary path
- Interpolation (morphing) (between points)
- Averaging (of some points)
- Attribute arithmetic
 - Addition or subtraction of an attribute vector capturing a given characteristic
 - This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic)

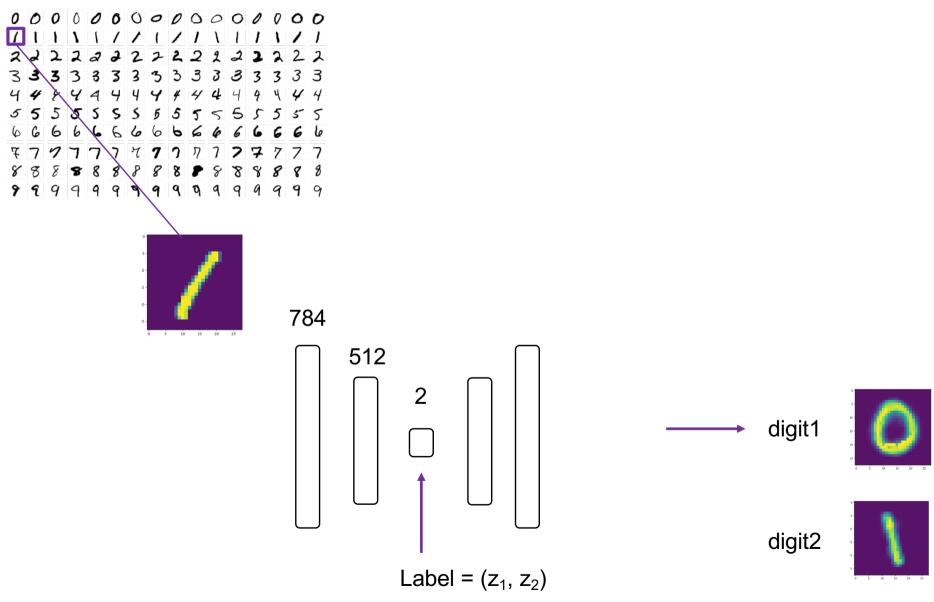
Variational Autoencoder Ex. of Attribute Arithmetic



Deep Learning – Music Generation – 2019

Jean-Pierre Briot

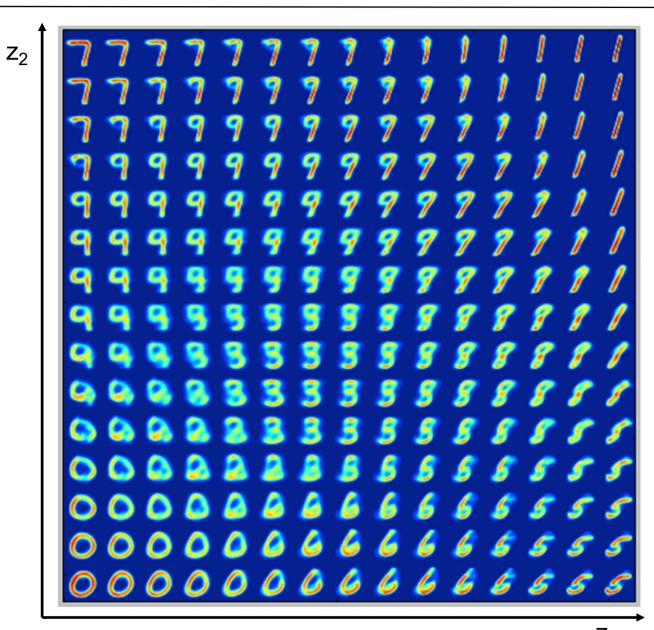
VAE MNIST [Keras/Cholet, 2016]



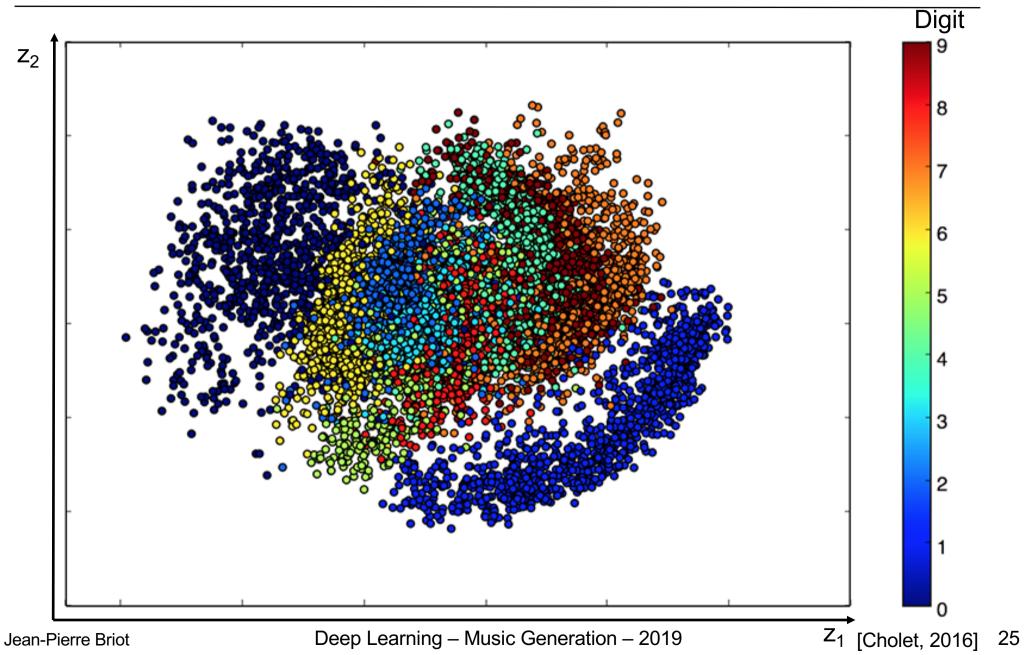
Jean-Pierre Briot

Deep Learning – Music Generation – 2019

VAE MNIST [Keras/Cholet, 2016]



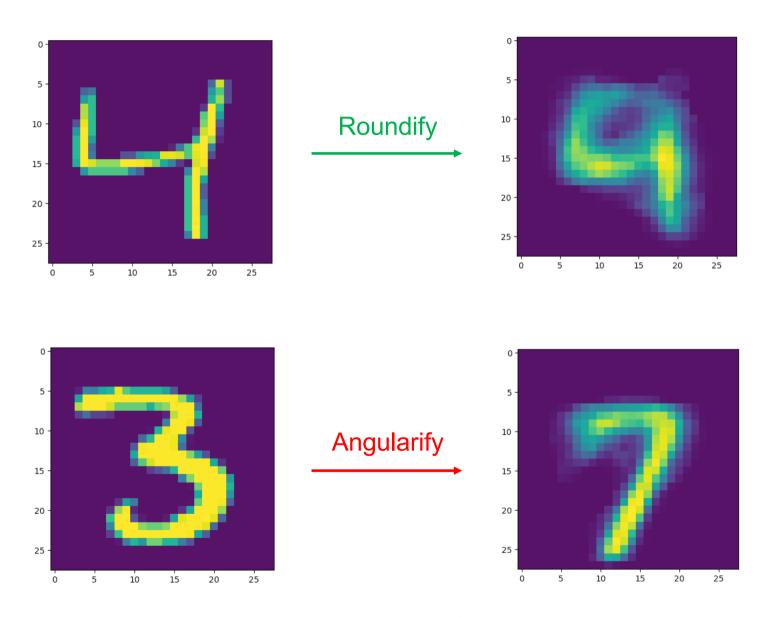
Latent Space Distribution



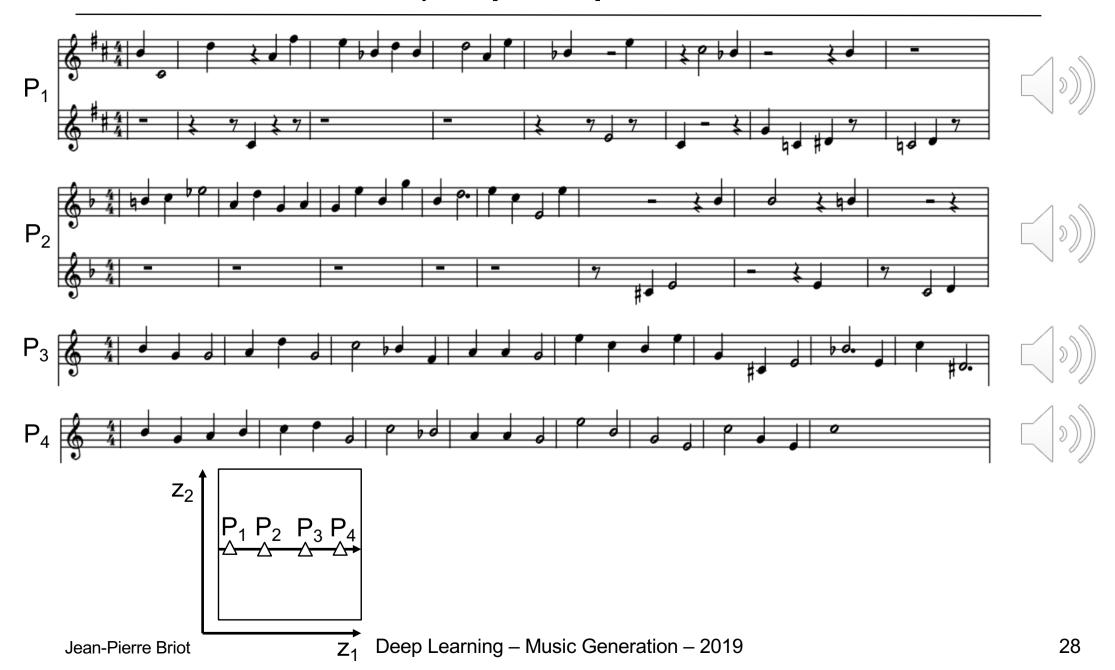
Attribute Arithmetic

- (Characteristics) Attribute Arithmetic
 - Addition or subtraction of an attribute vector capturing a given characteristic
 - This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic)
- Select a set of round and angular digits images
 - round numbers = [3, 6, 8, 9]
 - angular_numbers = [1, 4, 7]
- Encode each one
 - _____, ___, z_round_elements = encoder.predict(np.array(round_elements))
 - ____, __, z_angular_elements = encoder.predict(np.array(angular_elements))
- Compute the mean of the (z) corresponding latent variable values
 - z1_mean_round_elements = mean(z1_round_elements)
 - z1_mean_angular_elements = mean(z1_angular_elements)
 - **–** ...
- Do attribute arithmetic
 - def roundify(z):
 - z_rounded = [z[0] + z1_mean_round_elements, z[1] + z2_mean_round_elements]
 - return(decoder.predict(np.array([z_rounded]))[0])

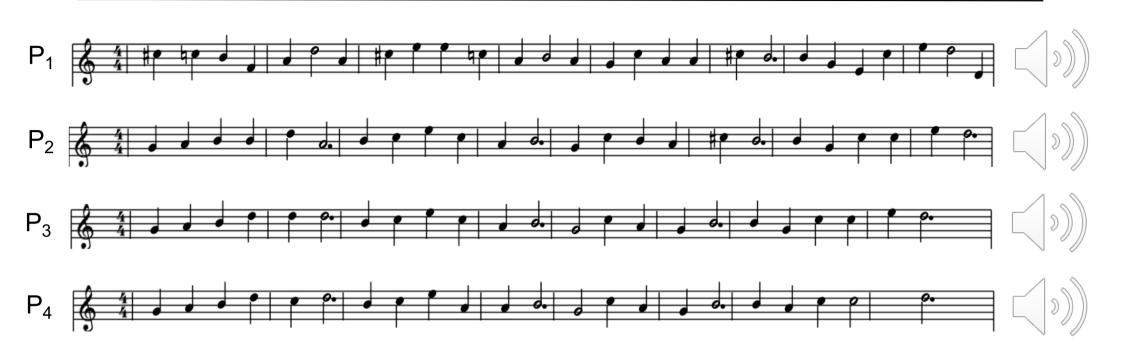
Examples

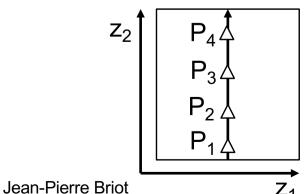


AutoVarBach Z₁ Step Interpolation



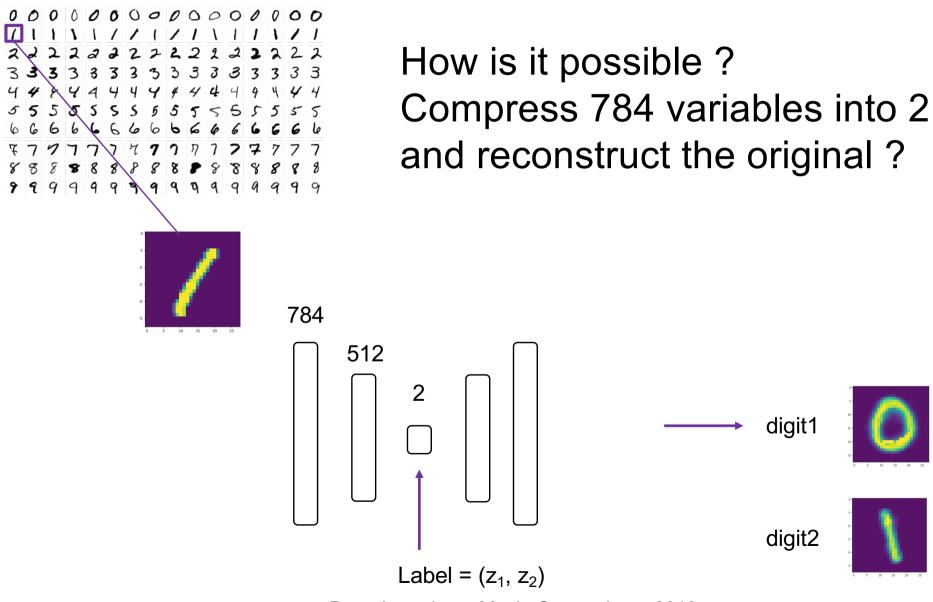
AutoVarBach Z₂ Step Interpolation



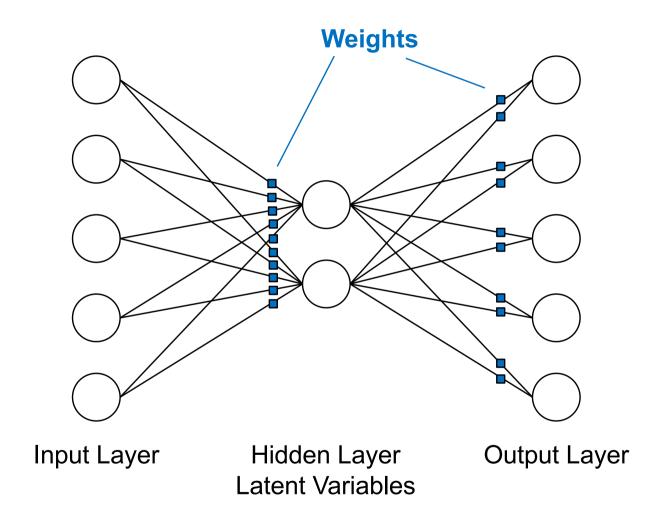


Deep Learning – Music Generation – 2019

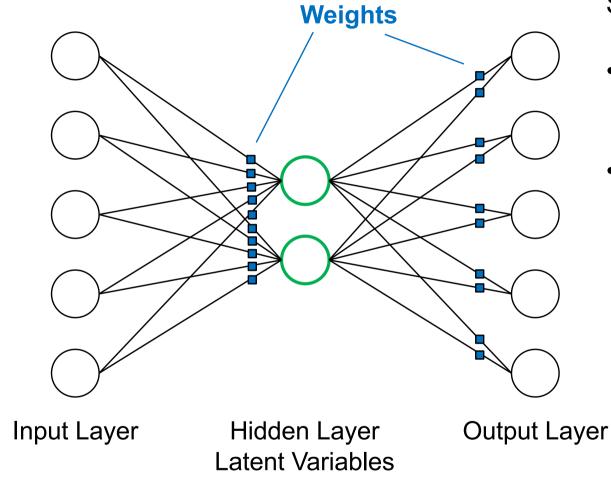
VAE Magic



VAE Magic Revealed



VAE Magic Revealed

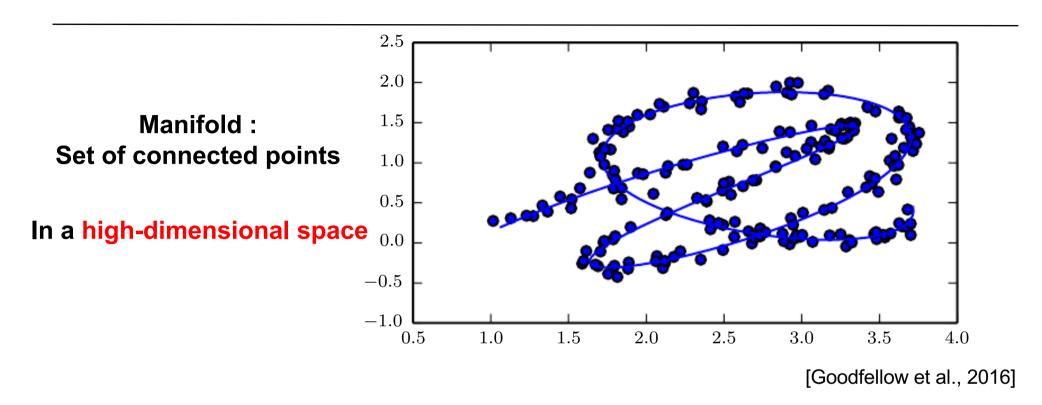


Split/Extract between

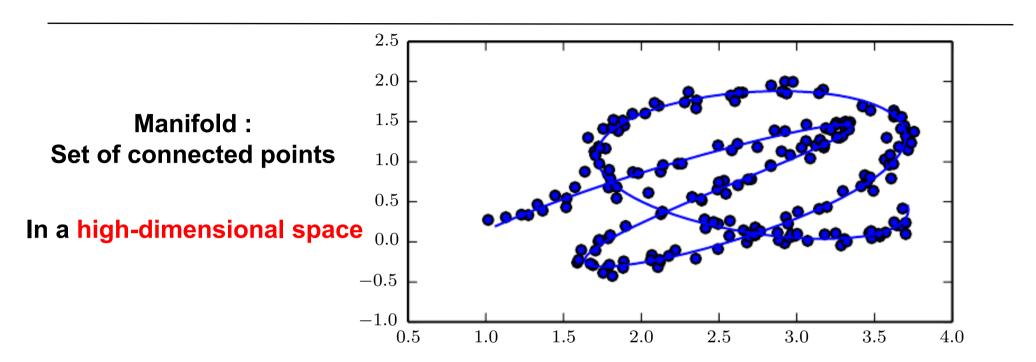
- Common Data: Weights
- Variable/Discriminative Data:
 Latent Variables

Manifold Representation

Representation/Manifold Learning

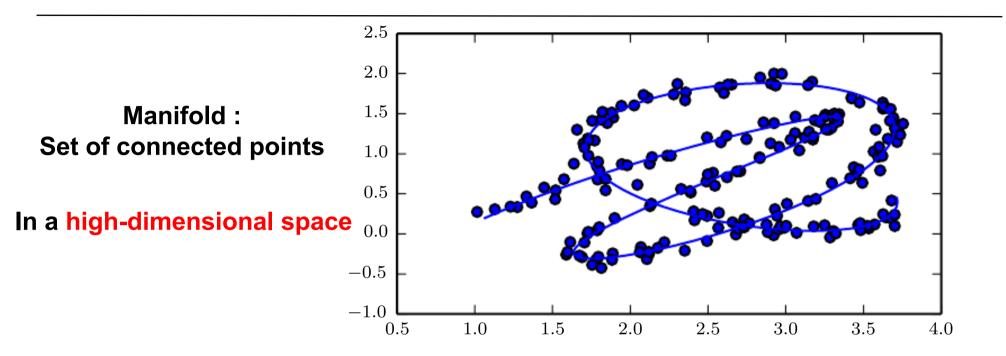


Representation/Manifold Learning

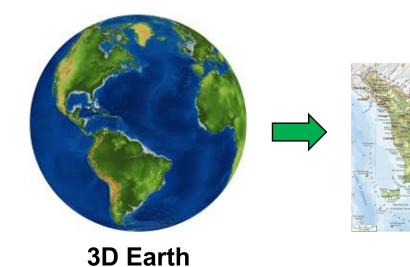


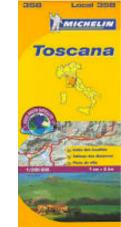
But can be approximated by a smaller number of dimensions, each dimension corresponding to a local variation

Representation/Manifold Learning



But can be approximated by a smaller number of dimensions, each dimension corresponding to a local variation





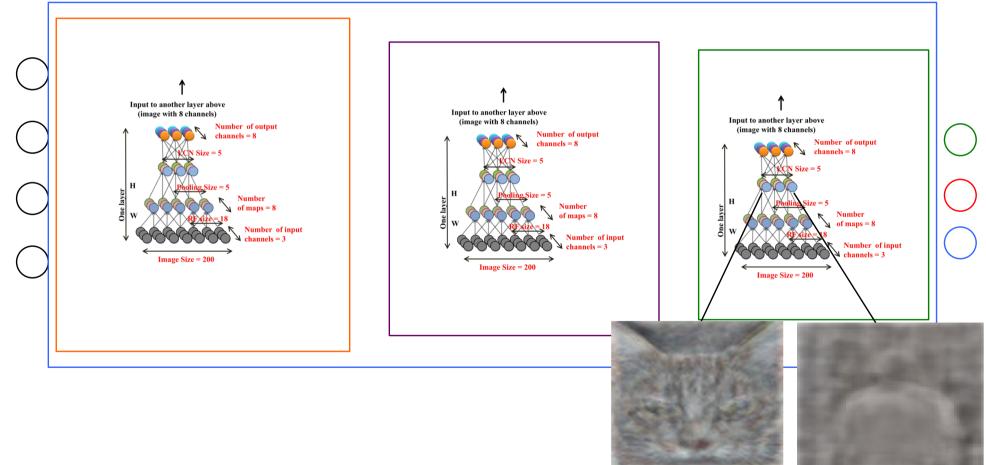
Analogy:

2D Map

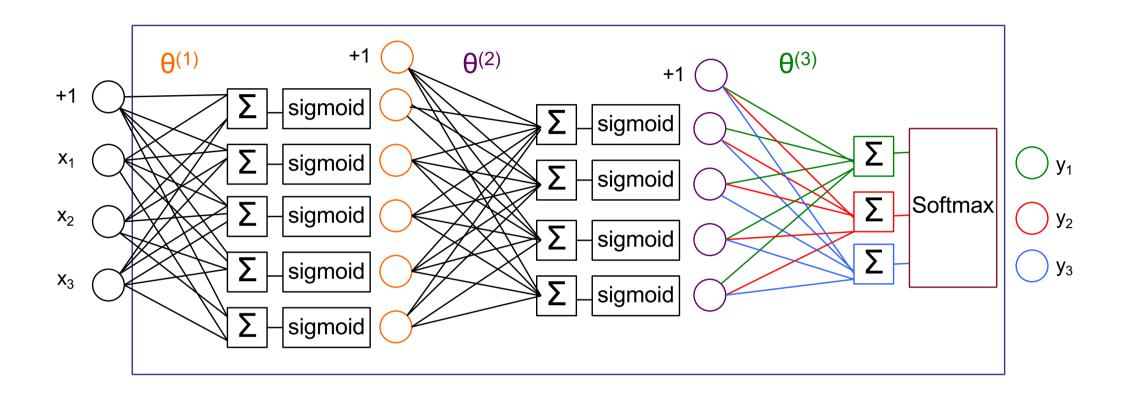
Pre-Training Deep Networks

Deep Unsupervised Learning

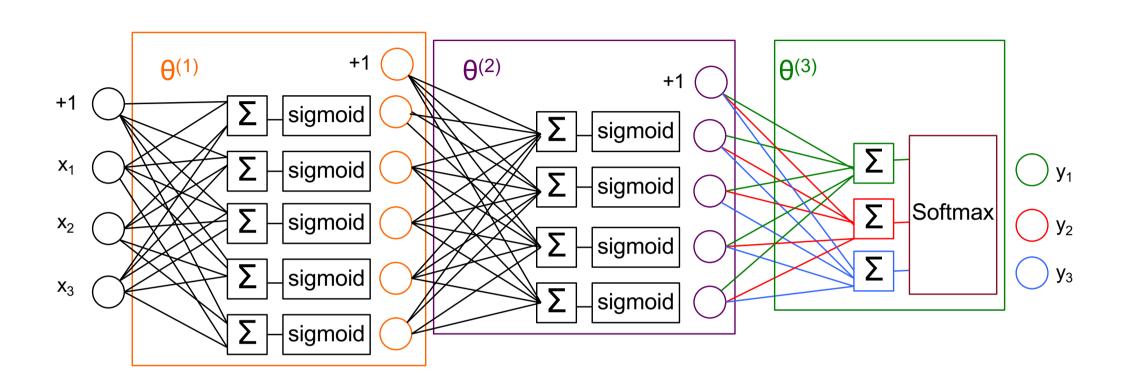
- Deep Learning may also be Applied to Unsupervised Learning
- Deep Brain Architecture (3 Layers of Autoencoders) [Le et al. 2012]
- (Purely) Unsupervised Learning (on Images extracted from YouTube videos)
- Discovery of Cats and Human Bust Patterns (Classifier/Neuron)



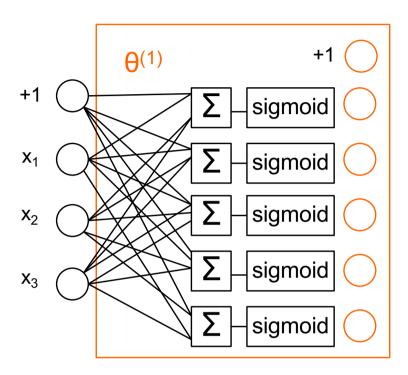
From Multilayer/Deep Networks...



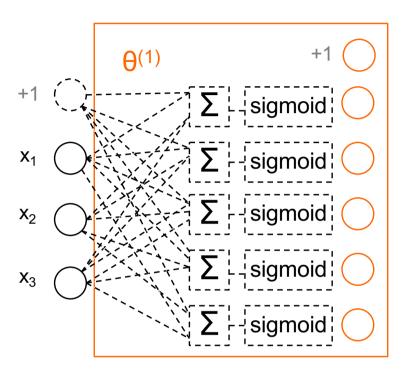
... to Pre-Trained Deep Networks [Hinton 2006]



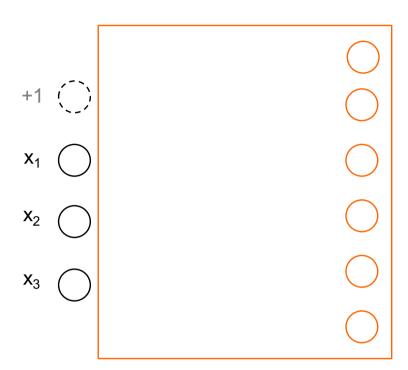
1st Hidden Layer



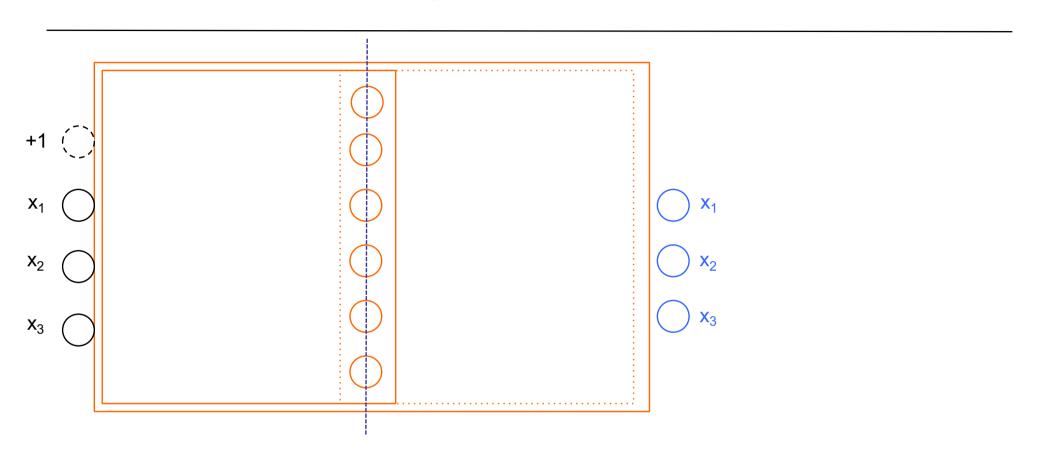
1st Hidden Layer



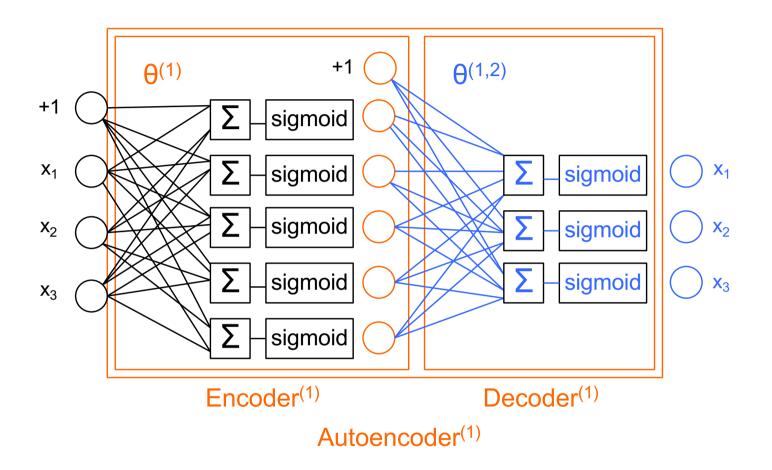
1st Hidden Layer



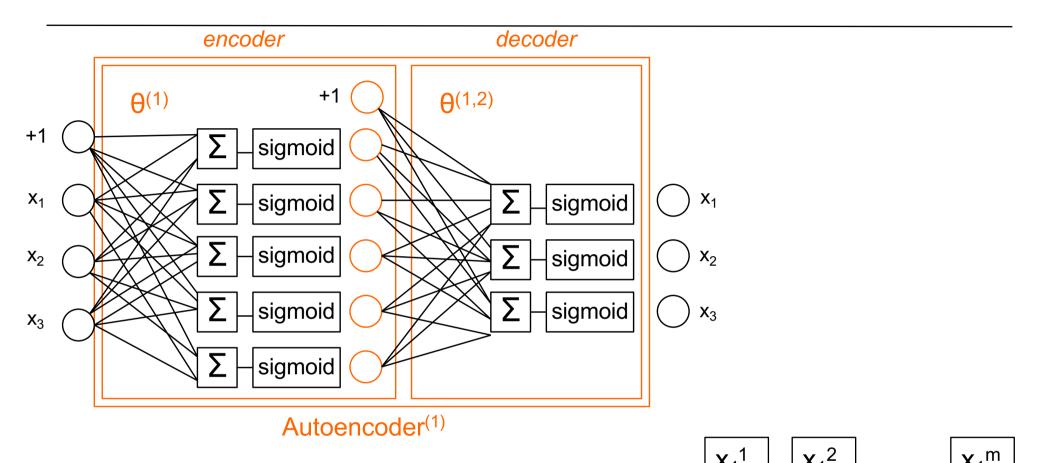
Mirroring Inputs into Outputs



Autoencoder



Autoencoder Self-Supervised Training

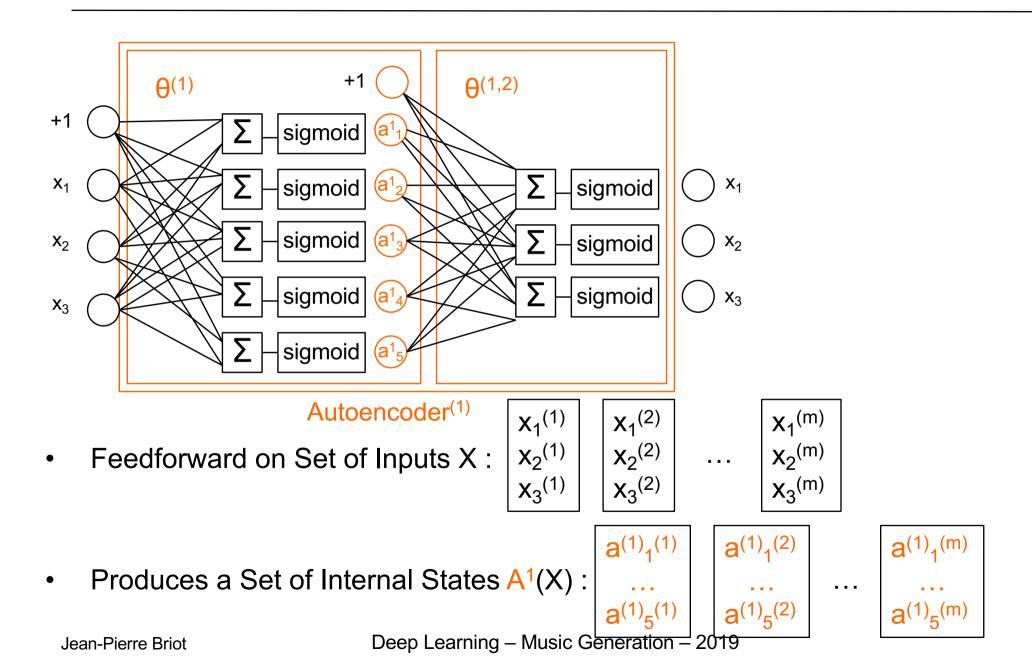


• Training (finding $\theta^{(1)}$ and $\theta^{(1,2)}$) on Input Dataset : $X: \begin{bmatrix} x_1 \\ x_2^1 \\ x_3^1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^2 \\ x_3^2 \end{bmatrix} \cdots \begin{bmatrix} x_1 \\ x_2^m \\ x_3^m \end{bmatrix}$

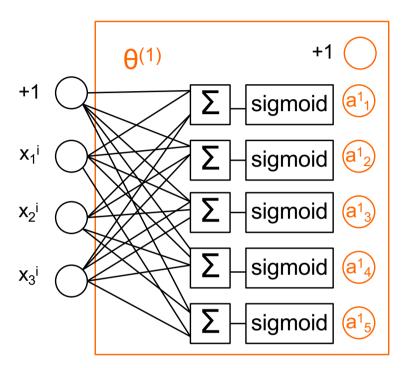
Self-Supervised Training implemented through Supervised Training

with Output = Input : X : Learn Identity with Sparsity Constraint [Ng 2012]

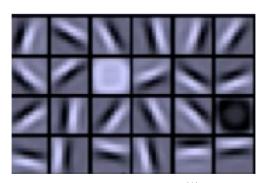
1st Sparse Autoencoder Production



1st Sparse Autoencoder Finalization



Autoencoder⁽¹⁾

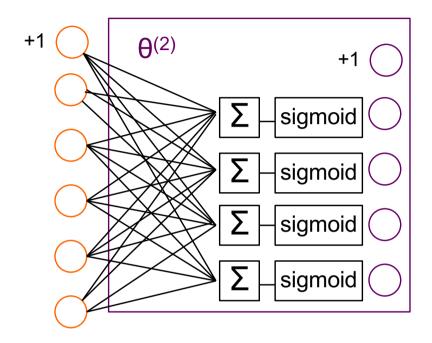


Learnt features(1)

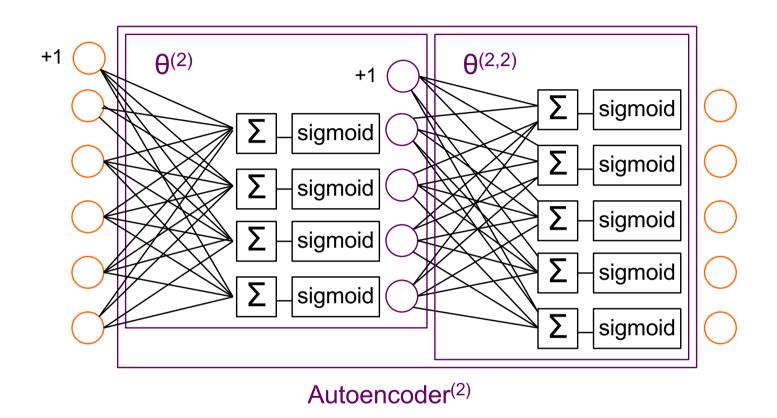
Note:

- Outputs and weights matrix \(\theta^{(1,2)}\) (decoder)
 are discarded They will not be used
- The weights matrix θ⁽¹⁾ is saved for the final stage (final global fine tuning see later)
- It provides accurate initialization of this layer's weight matrix
- The set of Internal States a⁽¹⁾ is kept for the next stage
- It provides examples inputs for the next layer autoencoder (see next slide)

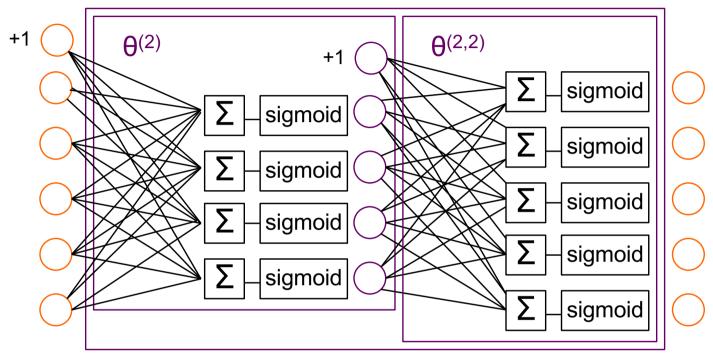
2nd Hidden Layer



2nd Sparse Autoencoder

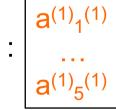


2nd Sparse Autoencoder Training



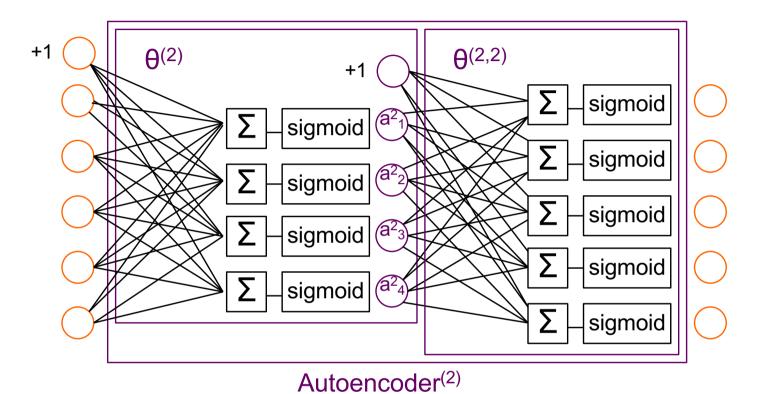
Autoencoder⁽²⁾

Training ($\theta^{(2)}$ and $\theta^{(2,2)}$) on Input Dataset : A¹(X) : $\begin{vmatrix} a^{(1)}_1^{(1)} & a^{(1)}_1^{(2)} & a^{(1)}_1^{(2)} & a^{(1)}_1^{(m)} & a^{(1)}_1^{(m)$

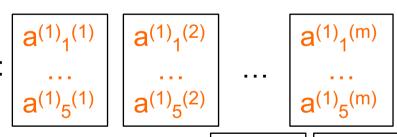


$$a^{(1)}1^{(2)}$$
 ... $a^{(1)}5^{(2)}$

2nd Sparse Autoencoder Production



Feedforward on Input Dataset : A¹(X) :



 $a^{(2)}1^{(1)}$

 $a^{(2)}_{4}^{(1)}$

Produces a Set of Internal States A²(A¹(X)):

)19

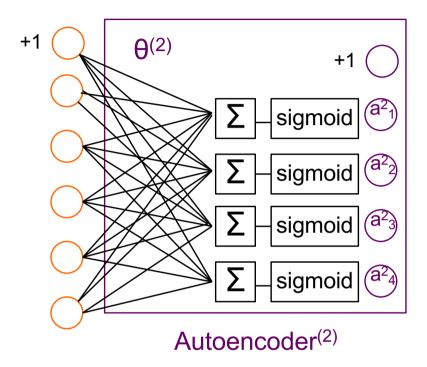
 $a^{(2)}_{1}^{(2)}$... $a^{(2)}_{4}^{(2)}$

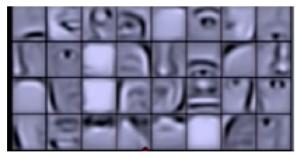
a⁽²⁾1^(m) ...

Jean-Pierre Briot

Deep Learning - Music Generation - 2019

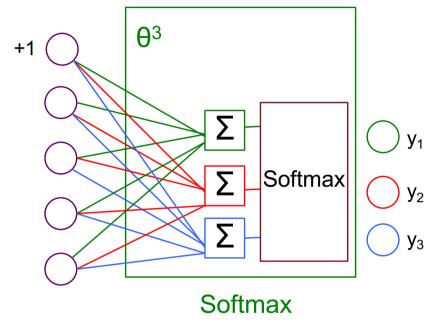
2nd Sparse Autoencoder Finalization





Learnt features(2)

(Final) Softmax Layer



• (Supervised) Training on Input Dataset : A²(A¹(X)) :

$$a^{(2)}_{1}^{(1)}$$
...
$$a^{(2)}_{4}^{(1)}$$

$$a^{(2)}1^{(2)}$$
 ... $a^{(2)}4^{(2)}$

$$a^{(2)}1^{(m)}$$

... $a^{(2)}4^{(m)}$

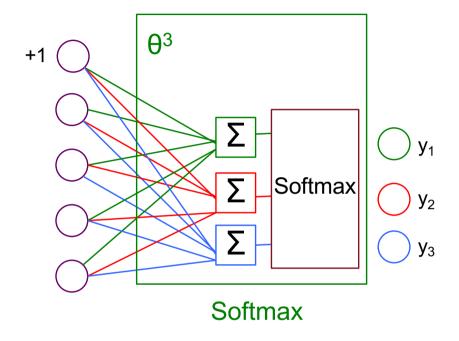
and Output Dataset : y :

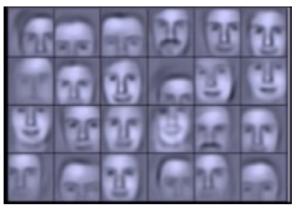
$$y_1^{(1)}$$

 $y_2^{(1)}$
 $y_3^{(1)}$

$$y_1^{(2)}$$
 $y_2^{(2)}$...

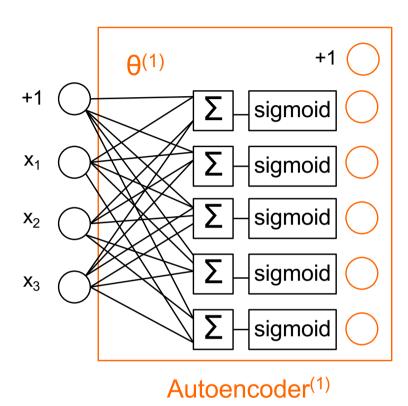
(Final) Softmax Layer Finalization



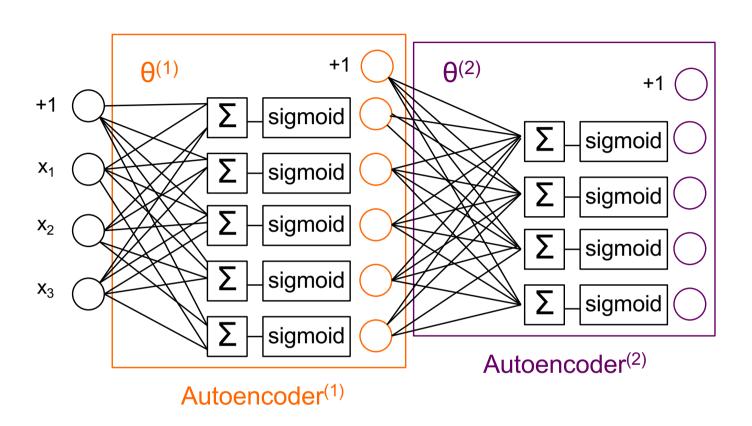


Learnt features(3)

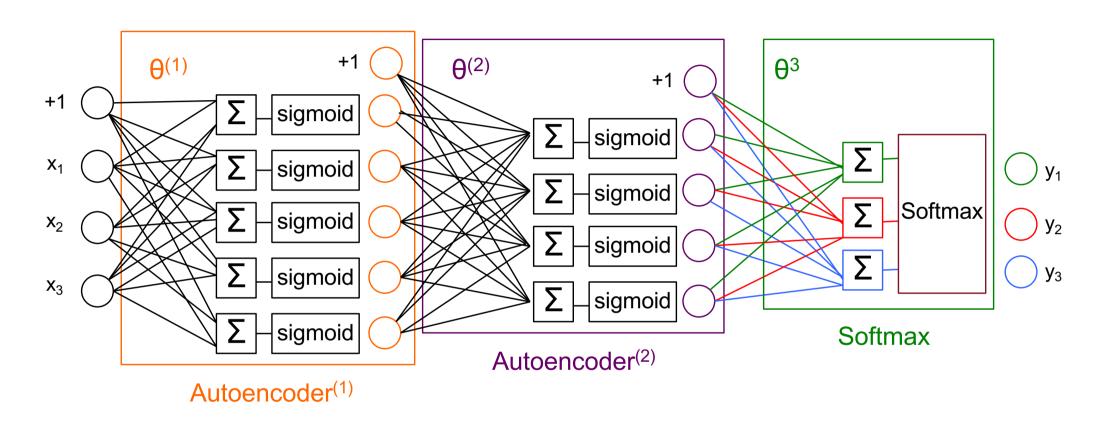
Assembling the Pre-Trained Deep Network



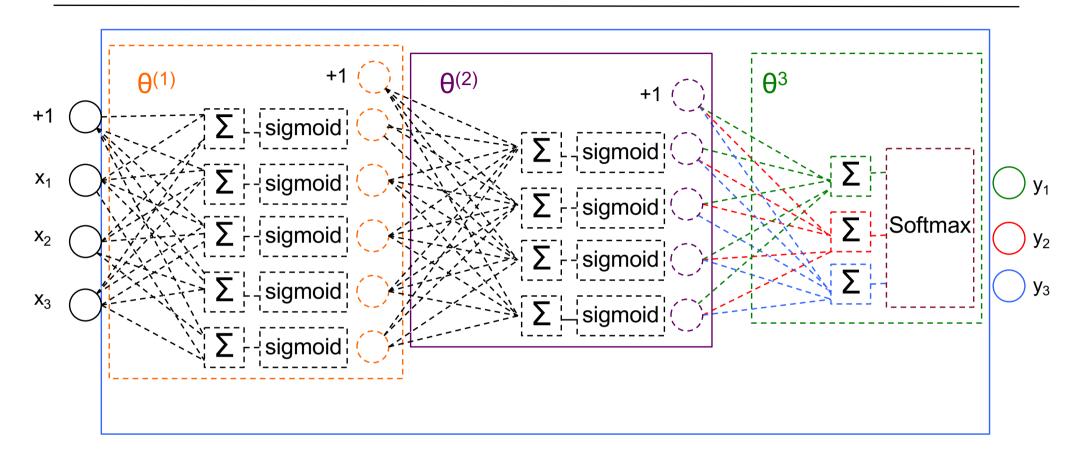
Assembling the Pre-Trained Deep Network



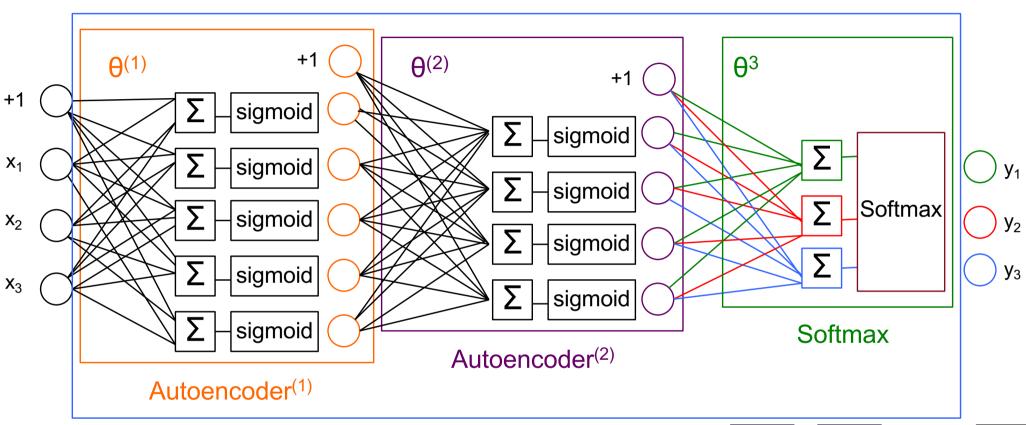
Assembling the Pre-Trained Deep Network Functional Composition



Assembling the Pre-Trained Deep Network Structural Composition – Composite Component



(Pre-Trained) Deep Network Final Global Training (Fine Tuning)



• Training (improving $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$) with Input Dataset : X :

and Output Dataset: y:

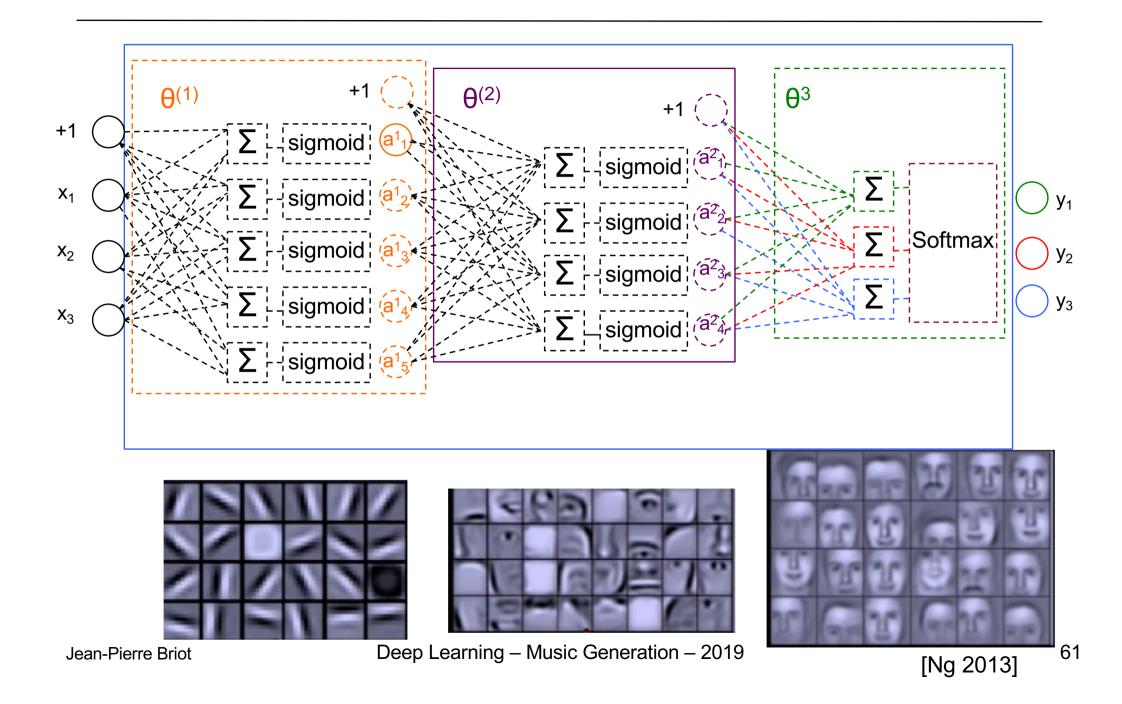
$$\begin{bmatrix} y_1^2 \\ y_2^2 \\ y_3^2 \end{bmatrix}$$

 X_1^1

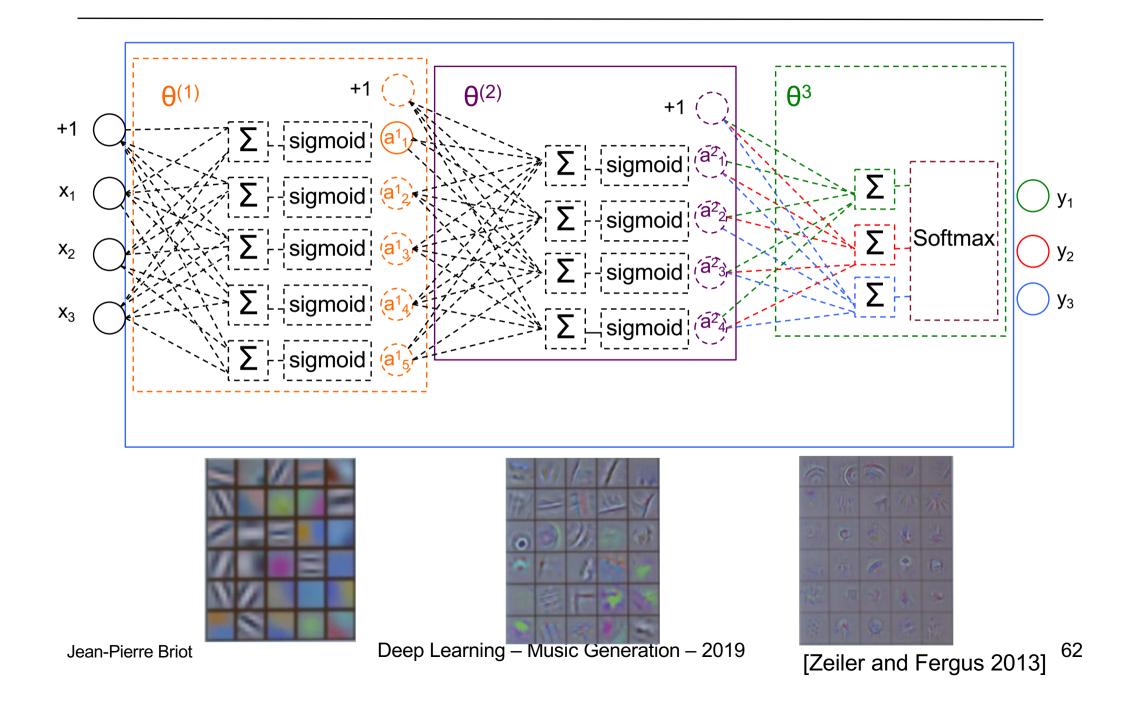
 x_2^1

 X_3^1

Successive Features/Abstractions Constructed



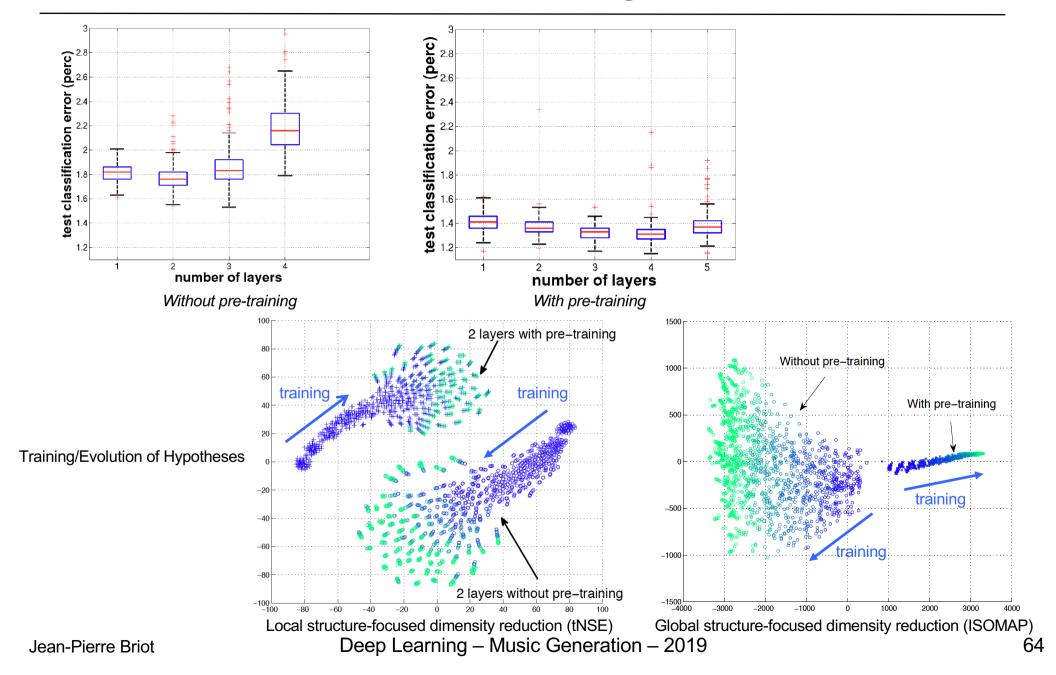
Successive Features/Abstractions Constructed



Summary – Key Ideas

- 1. Automatic Construction (Cascade Learning) of Hierarchical Abstractions/Features, which are Exposed and Useable (and Used, see 2.)
 - In Standard Multilayer Neural Networks, Features are Hidden (Black Box)
- 2. Accurate Initialization of Weights Matrixes for each Layer
 - In Standard Multilayer Neural Networks, Initialization of Weights Matrixes of each Layer is Heuristic, and is NOT Based on Information (Training Data/Examples)
 - InPre-trained Deep Networks, Initialization is based on Training Examples for the First Layer and on Successive Features extracted from Training Examples for Successive Layers
 - Therefore Initialization could be Much More Accurate
 - Remember that Initialization of Weights Matrixes is Critical because the Cost Function to be Minimized is Not Convex, therefore a Good Start (More Accurate Initialization) is a Better Promise to Avoid Falling into a Bad Local Minimum
 - This Appears (at least conceptually/potentially) as a Main Advantage of Pre-Training Deep Networks [Erhan et al. 2010]
- Using Autoencoders (e.g. rather than Restricted Boltzmann Machines) is particularly Elegant/Economical, because Standard Supervised Learning Algorithm is used to implement/emulate Self-Supervised Learning
 Deep Learning Music Generation 2019

Analysis of Differences between Deep Network with and without Pre-Training [Erhan et al. 2010]



Gains

- (Significantly) Better Accuracy (upto 10% gain [Hinton 2009])
- Better Generalization (Regularization)

_	Rank	Name	Error rate	Description
\	1	U. Toronto	0.15315	Deep learning
)	2	U. Tokyo		Hand-crafted
	3	U. Oxford	0.26979	features and
	4	Xerox/INRIA	0.27058	learning models. Bottleneck.

65

- Automatic Construction (Cascade Learning) of Hierarchical Abstractions/Features
- More Data Available for Training Autoencoders/Hidden Layers
 - Does not need Labels because Self-Supervised/Unsupervised
 - But Data should be from the same Domain to be learnt
 - Relation with Transfer Learning
- But Pre-Training is less Used at this Moment

Because other Techniques Optimizing Learning (Improving Generalization) are

Efficient

Preventing co-adaptation of feature detectors

» Randomly omitting half of the feature detectors

» Advanced Dropout

- Batch Normalization [loffe & Szegedy, 2015]
 - » Normalization of each layer unit
- Deep Residual Learning [He et al., 2015]
 - » Learning x -> x+y and not x -> y

