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Recent Creations
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Electro Dance-Pop Music 

• YDCHT (Young Americans Challenging High Technology)

• Chain Tripping Album, 30 August 2019

• Composed with Magenta MusicVAE

I’m so in love

I can feel it in my car

I can feel it in my heart,

I can feel it so hard

I want your phone to my brain

I want you to call my name

I want you to do it too

Oh, won’t you come, won’t you come

Won’t you work on my head

Be my number nine

Loud Light(Downtown) Dancing
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YDCHT + Magenta – Chain Tripping Album

• Melody/Chords/Rhythm Loops
– MusicVAE (VRAE)
– Training Corpus: Previous music by YDCHT

• Lyrics
– LSTM
– Training Corpus: YDCHT + Liked Lyrics

• Sounds
– Nsynth (Signal VAE)

• Images and Videos
– GAN
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https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-
music-an-album-that-doesnt-suck/

https://arstechnica.com/gaming/2019/08/yachts-chain-tripping-is-a-new-landmark-for-ai-music-an-album-that-doesnt-suck/


Deep Learning – Music Generation – 2019Jean-Pierre Briot

YDCHT + Magenta – Chain Tripping Album

• Rules:
– Every new song interpolated from existing YDCHT 

melodies
– 4 measures-long loops
– Cannot add any note, harmony
– Only substractive or transpositional changes
– Structure and collage allowed
– Assignment (to vocal, bass line…)

• Human Production and Arrangements

https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo
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https://www.youtube.com/watch?time_continue=1378&v=pM9u9xcM_cs&feature=emb_logo
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History Revisited
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Deep Learning
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• Boom Since 2012 (Imagenet Breakthrough)

• Image Recognition
• Weather Prediction
• Translation

• Speech Recognition
• Speech Synthesis
• Source Separation

• Music Creation
• Image Creation

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Deep Learning

8

• Overwhelming Success

• Simple Basic Receipt

– Linear/Logistic Regression

– Loss Function Minimization

• Technical Improvements (since First Neural Networks)

– Backpropagation, LSTM, Batch Normalization…

– Loss Function Wide Application

» Meta-Level, ex: LSTM

» Constraints, ex: VAE

– Optimized Implementations/Platforms

• Scale+

– CPU

– Data
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Principle – Error Prediction/Classification Feedback
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X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Slide
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Principle – Error Prediction/Classification Feedback
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X

If Error Adjust Connexion Weights
Training Examples Prediction or

Classification

Neural Networks in One Two Slides

θ1

Σθ2 sigmoidθ3

sigmoid(θ0+θ1x1+ θ2x2+…)
Weighted Sum

Weights Non Linear
Activation Function

Bias
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Neural Networks Evolution
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Symbolic vs Connexionist AI – History

[Cardon et al., 2018]
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Neural Networks 4 Music Generation Evolution
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Connection Science, Vol. 6, Nos. 2 & 3, 1994 

Neural Network Music Composition by Prediction: 
Exploring the Benefits of Psychoacoustic 
Constraints and Multi-scale Processing 

MICHAEL C. MOZER 

In algorithmic music composition, a simple technique involves selecting notes sequentially 
according to a transition table that specifes the probability of the next note as a function 
of the previous context. A n  extension of this transition-table approach is described, using 
a recurrent autopredictive connectionist network called CONCERT.  C O N C E R T  is trained 
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T  can then be 
used to compose new pieces. A central ingredient of C O N C E R T  is the incorporation of 
psychologically grounded representations of pitch, duration and harmonic structure. C O N -  
C E R T  was tested on sets of examples artificially generated according to simple rules and 
was shown to learn the underlying structure, even where other approaches failed. In larger 
experiments, CONCERTwas  trained on sets ofJ. S. Bach pieces and traditional European 
folk melodies and was then allowed to compose novel melodies. Although the compositions 
are occasionally pleasant, and are preferred over compositions generated by a third-order 
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this 
limitation, several methods are explored to permit C O N C E R T  to induce structure at both 
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded 
limited success, but the overall results cast doubt on the promise of note-by-note prediction 
for composition. 

KEYWORDS: Music composition, neural networks, recurrent networks, psy- 
choacoustic representation, multi-scale processing. 

1. Introduction 

In creating music, composers bring to bear a wealth of knowledge of musical 
conventions. Some of this knowledge is based on the experience of the individual, 
some is culture specific, and perhaps some is universal. No matter what the source, 
this knowledge acts to constrain the composition process, specifying, for example, 
the musical pitches that form a scale, the pitch or chord progressions that are 
agreeable, and stylistic conventions like the division of a symphony into movements 
and the AABB form of a gavotte. If we hope to build automatic composition systems 
that create agreeable tunes, it will be necessary to incorporate knowledge of musical 
conventions into the systems. The difficulty is in deriving this knowledge in an 

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of 
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu. 
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Sequential network Wavenet
Concert

LSTM Blues

Creation By Refinement: A Creativity Paradigm 
for Gradient Descent Learning Networks 

J. P. Lewis 
Digital Sound Labora to ry  

New York Ins t i t u t e  of Technology 
Old Westbury, NY 11568 

ABSTRACT 
\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a 
trained gradient descent associative learning network. The  paradigm consists of a learning phase, 
in which the networh learns to identify patterns of the desired class, followed by a simple syn- 
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple- 
mentnrg t o  the one used i n  learning. This paradigm is alternative to one in which novel patterns 
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob- 
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple 
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns 
rcyrcwnting musical motifs, and then creates similar motifs. 

INTRODUCTION 

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica- 
t ions are potent i d l y  relcvant to applications including simulation and computer arts which 
require the  grmcrntion of novel patterns having a desired structure. For example, in simulation 
problems h c ~ e  exist ing models are inadequate for simulation, the simulation may be developed 
directly from samplc-s of the da t a  to be modeled. 

The connertionist approarh is particularly appropriate for computer arts applications such as 
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim- 
ited rather than dctermined by physical law in a more direct form. The  problem of generating 
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which 
connect i o n k t  approaches are well suited. 

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with 
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description. 
For exariiplr, in  westcm tonal music a composition is considered to have a fundamental tone 
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the 
ending In some c : w s  a Composition does not end on the tonic however, and occasionally a com- 
position can be undr.rstootl in  terms of more than one tonic. Significantly, the existence of excep- 
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe- 
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this. 

We will consider several approaches to generating novel patterns with neural networks, and 
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non- 
representat.iona1 creative problems such as music composition. 

11-229 

Peter M. Todd 
Department of Psychology 
Stanford University 
Stanford, California 94305 USA 
todd@psych.stanford.edu 

With the advent of von Neumann-style computers, 
widespread exploration of new methods of music 
composition became possible. For the first time, 
complex sequences of carefully specified symbolic 
operations could be performed in a rapid fashion. 
Composers could develop algorithms embodying 
the compositional rules they were interested in and 
then use a computer to carry out these algorithms. 
In this way, composers could soon tell whether the 
results of their rules held artistic merit. This ap- 
proach to algorithmic composition, based on the 
wedding between von Neumann computing ma- 
chinery and rule-based software systems, has been 
prevalent for the past thirty years. 

The arrival of a new paradigm for computing has 
made a different approach to algorithmic composi- 
tion possible. This new computing paradigm is 
called parallel distributed processing (PDP), also 
known as connectionism. Computation is per- 
formed by a collection of several simple processing 
units connected in a network and acting in coopera- 
tion (Rumelhart and McClelland 1986). This is in 
stark contrast to the single powerful central pro- 
cessor used in the von Neumann architecture. One 
of the major features of the PDP approach is that it 
replaces strict rule-following behavior with regu- 
larity-learning and generalization (Dolson 1989). 
This fundamental shift allows the development of 
new algorithmic composition methods that rely 
on learning the structure of existing musical ex- 
amples and generalizing from these learned struc- 
tures to compose new pieces. These methods con- 
trast greatly with the majority of older schemes 
that simply follow a previously assembled set of 
compositional rules, resulting in brittle systems 
typically unable to appropriately handle unexpected 
musical situations. 

Computer Music Journal, Vol. 13, No. 4, Winter 1989, 
? 1989 Massachusetts Institute of Technology. 

A Connectionist 
Approach To Algorithmic 
Composition 

To be sure, other algorithmic composition meth- 
ods in the past have been based on abstracting cer- 
tain features from musical examples and using 
these to create new compositions. Techniques such 
as Markov modeling with transition probability 
analysis (Jones 1981), Mathews' melody interpola- 
tion method (Mathews and Rosler 1968), and Cope's 
EMI system (Cope 1987) can all be placed in this 
category. However, the PDP computational para- 
digm provides a single powerful unifying approach 
within which to formulate a variety of algorithmic 
composition methods of this type. These new learn- 
ing methods combine many of the features of the 
techniques listed above and add a variety of new ca- 
pabilities. Perhaps most importantly, though, they 
yield different and interesting musical results. 

This paper presents a particular type of PDP 
network for music composition applications. Vari- 
ous issues are discussed in designing the network, 
choosing the music representation used, training 
the network, and using it for composition. Com- 
parisons are made to previous methods of algo- 
rithmic composition, and examples of the net- 
work's output are presented. This paper is intended 
to provide an indication of the power and range of 
PDP methods for algorithmic composition and to 
encourage others to begin exploring this new ap- 
proach. Hence, rather than merely presenting a 
reduced compositional technique, alternative ap- 
proaches and tangential ideas are included through- 
out as points of departure for further efforts. 

A Network for Learning Musical Structure 

Our new approach to algorithmic composition is 
first to create a network that can learn certain as- 
pects of musical structure, second to give the net- 
work a selection of musical examples from which 
to learn those structural aspects, and third to let 
the network use what it has learned to construct 

Todd 27 

Creation by Refinement
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Neural Network Music Composition by Prediction: 
Exploring the Benefits of Psychoacoustic 
Constraints and Multi-scale Processing 

MICHAEL C. MOZER 

In algorithmic music composition, a simple technique involves selecting notes sequentially 
according to a transition table that specifes the probability of the next note as a function 
of the previous context. A n  extension of this transition-table approach is described, using 
a recurrent autopredictive connectionist network called CONCERT.  C O N C E R T  is trained 
on a set of pieces with the aim of extracting stylistic regularities. C O N C E R T  can then be 
used to compose new pieces. A central ingredient of C O N C E R T  is the incorporation of 
psychologically grounded representations of pitch, duration and harmonic structure. C O N -  
C E R T  was tested on sets of examples artificially generated according to simple rules and 
was shown to learn the underlying structure, even where other approaches failed. In larger 
experiments, CONCERTwas  trained on sets ofJ. S. Bach pieces and traditional European 
folk melodies and was then allowed to compose novel melodies. Although the compositions 
are occasionally pleasant, and are preferred over compositions generated by a third-order 
transition table, the compositions sufjerfrom a lack of global coherence. To overcome this 
limitation, several methods are explored to permit C O N C E R T  to induce structure at both 
fine and coarse scales. In experiments with a training set of waltzes, these methods yielded 
limited success, but the overall results cast doubt on the promise of note-by-note prediction 
for composition. 

KEYWORDS: Music composition, neural networks, recurrent networks, psy- 
choacoustic representation, multi-scale processing. 

1. Introduction 

In creating music, composers bring to bear a wealth of knowledge of musical 
conventions. Some of this knowledge is based on the experience of the individual, 
some is culture specific, and perhaps some is universal. No matter what the source, 
this knowledge acts to constrain the composition process, specifying, for example, 
the musical pitches that form a scale, the pitch or chord progressions that are 
agreeable, and stylistic conventions like the division of a symphony into movements 
and the AABB form of a gavotte. If we hope to build automatic composition systems 
that create agreeable tunes, it will be necessary to incorporate knowledge of musical 
conventions into the systems. The difficulty is in deriving this knowledge in an 

M. C. Mozer, Department of Computer Science, and Institute of Cognitive Science, University of 
Colorado, Boulder, CO 80309-0430, USA. E-mail: moze@cs.colorado.edu. 
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Creation By Refinement: A Creativity Paradigm 
for Gradient Descent Learning Networks 

J. P. Lewis 
Digital Sound Labora to ry  

New York Ins t i t u t e  of Technology 
Old Westbury, NY 11568 

ABSTRACT 
\Ye describe a paradigm for creating novel examples from the class of patterns recognized by a 
trained gradient descent associative learning network. The  paradigm consists of a learning phase, 
in which the networh learns to identify patterns of the desired class, followed by a simple syn- 
thesis algorithm, in which a haphazard ‘creation’ is refined by a gradient descent search comple- 
mentnrg t o  the one used i n  learning. This paradigm is alternative to one in which novel patterns 
are obtained by applying novel inputs to a learned mapping, and can be used for creative prob- 
Itwts such a< inusic compo<ition which are not described by an input-output mapping. A simple 
4rnulntion is sho\\n in which a back propagation network learns to judge simple patterns 
rcyrcwnting musical motifs, and then creates similar motifs. 

INTRODUCTION 

Thc ad\ ant age& \cliich conncrtionist~ or neural network approaches have shown in other applica- 
t ions are potent i d l y  relcvant to applications including simulation and computer arts which 
require the  grmcrntion of novel patterns having a desired structure. For example, in simulation 
problems h c ~ e  exist ing models are inadequate for simulation, the simulation may be developed 
directly from samplc-s of the da t a  to be modeled. 

The connertionist approarh is particularly appropriate for computer arts applications such as 
machine cnmpn’sitjon of music- /1,2] where the structure of the desired patterns is perceptually lim- 
ited rather than dctermined by physical law in a more direct form. The  problem of generating 
pntterns const.rnined by this structure is somewhat parallel to the perceptual problems for which 
connect i o n k t  approaches are well suited. 

C‘onversclj , attempt< to formulate satisfactory ‘‘laws’’ of composition (for example) have met with 
thc difficulty that t hvse laws are characteristically fuzzy and ill suited for algorithmic description. 
For exariiplr, in  westcm tonal music a composition is considered to have a fundamental tone 
(tonic) whi1.h is rrndwatond t hrnughout a composition and which should appear explicitly in the 
ending In some c : w s  a Composition does not end on the tonic however, and occasionally a com- 
position can be undr.rstootl in  terms of more than one tonic. Significantly, the existence of excep- 
tions does not invalidate the notion of tonality; music exhibiting these exceptions may neverthe- 
less be considered ‘tonal’ although we are unable to rigorously define what is meant by this. 

We will consider several approaches to generating novel patterns with neural networks, and 
describe one approach, termed ‘creation by refinement’ (CBH), which is suited for non- 
representat.iona1 creative problems such as music composition. 
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With the advent of von Neumann-style computers, 
widespread exploration of new methods of music 
composition became possible. For the first time, 
complex sequences of carefully specified symbolic 
operations could be performed in a rapid fashion. 
Composers could develop algorithms embodying 
the compositional rules they were interested in and 
then use a computer to carry out these algorithms. 
In this way, composers could soon tell whether the 
results of their rules held artistic merit. This ap- 
proach to algorithmic composition, based on the 
wedding between von Neumann computing ma- 
chinery and rule-based software systems, has been 
prevalent for the past thirty years. 

The arrival of a new paradigm for computing has 
made a different approach to algorithmic composi- 
tion possible. This new computing paradigm is 
called parallel distributed processing (PDP), also 
known as connectionism. Computation is per- 
formed by a collection of several simple processing 
units connected in a network and acting in coopera- 
tion (Rumelhart and McClelland 1986). This is in 
stark contrast to the single powerful central pro- 
cessor used in the von Neumann architecture. One 
of the major features of the PDP approach is that it 
replaces strict rule-following behavior with regu- 
larity-learning and generalization (Dolson 1989). 
This fundamental shift allows the development of 
new algorithmic composition methods that rely 
on learning the structure of existing musical ex- 
amples and generalizing from these learned struc- 
tures to compose new pieces. These methods con- 
trast greatly with the majority of older schemes 
that simply follow a previously assembled set of 
compositional rules, resulting in brittle systems 
typically unable to appropriately handle unexpected 
musical situations. 

Computer Music Journal, Vol. 13, No. 4, Winter 1989, 
? 1989 Massachusetts Institute of Technology. 

A Connectionist 
Approach To Algorithmic 
Composition 

To be sure, other algorithmic composition meth- 
ods in the past have been based on abstracting cer- 
tain features from musical examples and using 
these to create new compositions. Techniques such 
as Markov modeling with transition probability 
analysis (Jones 1981), Mathews' melody interpola- 
tion method (Mathews and Rosler 1968), and Cope's 
EMI system (Cope 1987) can all be placed in this 
category. However, the PDP computational para- 
digm provides a single powerful unifying approach 
within which to formulate a variety of algorithmic 
composition methods of this type. These new learn- 
ing methods combine many of the features of the 
techniques listed above and add a variety of new ca- 
pabilities. Perhaps most importantly, though, they 
yield different and interesting musical results. 

This paper presents a particular type of PDP 
network for music composition applications. Vari- 
ous issues are discussed in designing the network, 
choosing the music representation used, training 
the network, and using it for composition. Com- 
parisons are made to previous methods of algo- 
rithmic composition, and examples of the net- 
work's output are presented. This paper is intended 
to provide an indication of the power and range of 
PDP methods for algorithmic composition and to 
encourage others to begin exploring this new ap- 
proach. Hence, rather than merely presenting a 
reduced compositional technique, alternative ap- 
proaches and tangential ideas are included through- 
out as points of departure for further efforts. 

A Network for Learning Musical Structure 

Our new approach to algorithmic composition is 
first to create a network that can learn certain as- 
pects of musical structure, second to give the net- 
work a selection of musical examples from which 
to learn those structural aspects, and third to let 
the network use what it has learned to construct 
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The Old Emperor Old Clothes
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The Old Emperor Old Clothes (Neural Networks)
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• Single Hidden Layer Neural Network
• Hand Made
• Technical Limitations
• Slow CPU
• Small memory
• Few Examples
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First Experiments in Using Artificial Neural Networks
for Music Generation

1988–1989
• Lewis, J. P., Creation by Refinement: A Creativity Paradigm for Gradient 

Descent Learning Networks, International Conference on Neural Networks, 
San Diego, CA, USA, July 1988, pp. II-229–233.

• Todd, Peter M., A Sequential Network Design for Musical Applications, 
Proceedings of the 1988 Connectionist Models Summer School, CMU, June
1988, Touretsky, D., Hinton, G., Sejnowski, T. (eds), Morgan Kaufmann, pp. 
76–84, 1989.

• Todd, Peter M., A Connectionist Approach to Algorithmic Composition, 
Computer Music Journal (CMJ), MIT Press, 13(4):27–43, 1989.

2004
• Mozer, M. C., Neural Network Music Composition by Prediction: Exploring the 

Benefits of Psychoacoustic Constraints and Multi-scale Processing, 
Connection Science, 6(2&3):247–280, 1994

19



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Todd’s Architecture Variation [Todd, 1989]
Fig. 1. A network design 
which can learn to associ- 
ate time windows (e.g. 
measures) in a piece of 
music with the following 
time windows. Here, one 
measure as input produces 
the following measure as 

output. Circles represent 
individual units, lines rep- 
resent directed connec- 
tions between units, and 
arrows indicate the flow of 
activation through the net- 
work. Not all units or con- 
nections are shown. 

new pieces of music. We can satisfy the first step 
by designing a network that can exactly reproduce 
a given set of musical examples, because being able 
to reproduce the examples requires that the net- 
work has learned a great deal about their structure. 

A network design that meets this music learning 
goal has been described in a previous paper by this 
authQr (Todd 1988). This network has been applied 
to both the task of algorithmic composition and the 
psychological modeling of certain aspects of human 
musical performance, such as tonal expectation 
(Bharucha and Todd 1989). This design is presented 
here. As in the original paper, I will restrict the mu- 
sical domain to the relatively simple class of mono- 
phonic melodies. This restriction simplifies the 
nature of the network by avoiding certain problems 
associated with the representation of polyphony, 
which will be indicated later. However, the mono- 
phonic domain remains musically realistic and in- 
teresting, as the examples will show. 

Network Design 

time window N+ 1 

t Output 
r' . . . 

Input 

time window N 

Since music is fundamentally a temporal process, 
the first consideration in designing a network to 
learn melodies is how to represent time. One way 
time may be represented is by standard musical no- 
tation translated into an ordered spatial dimension. 
Thus, the common staff represents time flowing 
from left to right, marked off at regular intervals by 
measure bars. Music could be represented in a simi- 
lar fashion in a PDP network, with a large chunk of 
time being processed simultaneously, in parallel, 
with different locations in time captured by differ- 
ent positions of processing units in the network. In 
the limiting case, the entire melody could be pre- 
sented to the network simultaneously; alterna- 
tively, and requiring fewer input units, a sliding 
window of successive time-periods of fixed size 
could be used. This windowed approach is common 
in speech applications of various types, as in the 
NetTalk word-to-speech network (Sejnowski and 
Rosenberg 1987) and various phoneme recognition 
systems (Waibel et al. 1987). 

In essence, the time-as-spatial-position represen- 
tation converts the problem of learning music into 

the problem of learning spatial patterns. For ex- 
ample, learning a melody may consist of learning to 
associate each measure of the melody with the next 
one, as illustrated in Fig. 1. Thus when a particular 
measure is presented as the input to the network, 
the following measure will be produced as output. 
Learning to perform such pattern association is 
something at which PDP networks are quite good. 
Furthermore, networks are able to generalize to 
new patterns they have not previously learned, pro- 
ducing reasonable output in those cases as well. 
Thus, a new measure of music could be given as 
the input to a trained network, and it would pro- 
duce as output its best guess at what would be a 
reasonable following measure. This generalizing be- 
havior is the primary motivation for using PDP net- 
works in a compositional context, since what we 
are interested in is exactly the generation of reason- 
able musical patterns in new situations. 

While the spatial-position representation of time 
may be acceptable, it seems more intuitive to treat 
music as a sequential phenomenon, with notes 
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Fig. 2. A sequential net- 
work design which can 
learn to produce a se- 
quence of notes, using a 
memory of the notes al- 
ready produced. This 

memory is provided by the 
feedback connections 
shown, which channel 
produced notes back into 
the network. 

noteN N 

note N+ 1 

note N+2 + 

t Output 

feedback 

being produced one after another in succession. 
This view calls for the use of a sequential network, 
which learns to produce a sequence of single notes 
rather than a set of notes simultaneously. In this 
case, time is represented by the relative position of 
a note in the sequence, rather than the spatial posi- 
tion of a note in a window of units. Where net- 
works utilizing a spatial representation of time 
learn to associate a successive chunk of time with 
the previous chunk, sequential networks learn to 
produce the next note in a sequence based on some 
memory of past notes in the sequence. Thus, some 
memory of the past is needed in a sequential net- 
work, and this is provided by some sort of feedback 
connections that cycle current network activity 
back into the network for later use, as can be seen 
in Fig. 2. 

The learning phases of these two types of net- 
works are very similar-both learn to associate 
certain output patterns with certain inputs by ad- 
justing the weights on connections in the network. 
But their operation during production of melodies 
is quite different. Basically, the windowed-time pat- 
tern associator network produces a static output 
given its input: one window of time in produces 
one window of time out. The sequential network, 
on the other hand, cycles repeatedly to yield a se- 
quence of successively produced outputs. Each of 
these outputs further influences the production of 
later outputs in the sequence via the network's 
feedback connections and its generalizing ability. 
This ongoing dynamic behavior has great implica- 
tions for the sorts of sequences the network will 
produce, as will be seen later in this article. 

Actually, the windowed-time and sequential-time 
approaches are not contradictory and may be com- 
bined to advantage. A sequential network that pro- 
duces a sequence of time windows, rather than 
merely single notes, would learn a different set of 
associations and so make different generalizations 
during the composition phase. For the current dis- 
cussion, though, a standard, single-event output se- 
quential network design of the type first proposed 
by Jordan (1986a) has been used. A network of this 
type can learn to reproduce several monophonic 
melodies, thus capturing the important structural 
characteristics of a collection of pieces simulta- 
neously. This makes it an ideal candidate for our 
purposes. 

Jordan's sequential network design is essentially 
a typical, three-layer, feedforward network (Dolson 
1989) with some modifications mostly in the first 
(input) layer, as shown in Fig. 3. One set of units in 
the first layer, called the plan units, indicate which 
sequence (of several possibilities) is being learned 
or produced. The units do this by having a fixed set 
of activations-the plan-turned on for the dura- 
tion of the sequence. In effect the plan tells the 
network what to do by designating or naming the 
particular sequence being learned or produced. 

The context units (also called state units) make 
up the remainder of the first layer. These units are 
so named because they maintain the memory of the 
sequence produced so far, which is the current con- 
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for both output and con- 
text; context units also 
have self-feedback connec- 
tions. Each network out- 
put indicates the pitch at 
a certain time slice in the 
melody. 

t 

Context 
(memory of melody so far) 

text or state that the network uses to produce the 
next element in the sequence. Each successive out- 
put of the network is entered into this memory by 
the feedback connections indicated from the output 
units to the context units. 

A memory of more than just the single previous 
output is kept by having a self-feedback connection 
on each individual context unit, as shown in Fig. 3. 
These connections have a strength (weight) of less 
than 1.0, so that each context unit computes an 
exponentially decreasing sum of all of its previous 
inputs, which are the network's outputs. For ex- 
ample, if the self-feedback strength were 0.8, then a 
unit's memory would decrease proportionally by 
the amounts 0.8, 0.64, 0.51, 0.41, etc., as long as 
nothing new were entered into its memory. This 
connection strength cannot be greater than 1.0 or 
the activation values of the context units would ex- 
plode exponentially. 

The context units and plan units are all fully in- 
terconnected by a set of learned, weighted connec- 
tions to the next layer of units, the hidden units. 
The hidden units are so named because they are 
neither at the network's input nor output, and so 

are in some sense buried inside the network. The 
hidden units combine the weighted information 
from the (fixed) plan units and the (evolving) con- 
text units, processing it via their logistic activa- 
tion functions (Dolson 1989). They then pass on 
this processed information through the final set of 
weights to the output units. The output units then 
determine what the network will produce as the 
next element in the sequence. Each successive out- 
put is also finally passed along the feedback con- 
nections back to the context units, where they are 
added into the changing context. This in turn en- 
ables the computation of the following element in 
the sequence, and the cycle repeats. 

The actual number of the various types of units 
used in the network depends on several factors. The 
number of plan units must be sufficient to specify 
different plans for all the different sequences to be 
learned. For example, we might want to use plans 
that have only one plan unit on at a time (i.e., with 
an activation of 1.0), while all the rest of the plan 
units are off (i.e., they have activations of 0.0). The 
particular plan unit that is on, for example the third 
or the fifth, specifies the sequence being processed 
(i.e., sequence number 3 or number 5). This type of 
plan is known as a localist representation, because 
each unit represents an entire entity (here an entire 
sequence) locally, by itself. If we wanted to learn N 
sequences for example, we would need N plan units 
to specify all of them in this way. On the other 
hand, a binary-coded plan representation would be 
more compact: in this case, we would need only 
log2 N plan units to create N different plans. Thus 
plan 011 would specify sequence number 4 out of 8 
possible, starting with 000. This is a distributed 
type of representation, because each entity is repre- 
sented by a pattern of activation spread over several 
units at once. 

The number of output units in the network de- 
pends on the representation of the sequence ele- 
ments used, so it cannot be specified until this 
representation is settled. The number of context 
units depends on the type of memory desired. We 
will see below that having an equal number of out- 
put units and context units is useful. Finally, the 
number of hidden units depends on what the net- 
work must learn and cannot be exactly specified. If 
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Fig. 3. The sequential net- 
work design used for com- 
positional purposes in this 
paper. The current musical 
representation requires 
note-begin (nb) and pitch 
(D4-C6) units, as shown 

time slice N 

I 

30 

[Todd, 1988]

Feedforward architecture
Iterative generation

Recurrent architecture
Iterative generation

Recurrent + Conditioning architecture
Iterative generation
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Todd’s Conditioned Generation
Fig. 4. Network output 
using extrapolation from a 
single melody. In each 
case, both piano-roll-style 
output and common-prac- 
tice music notation are 
shown. Network outputs 

for the first 34 time-slices 
are shown, with row 0 
(bottom row) correspond- 
ing to the note-begin unit, 
and rows 1 - 14 corre- 
sponding to the pitch 
units, D4-C6. A black bar 

indicates the unit is on. 
Where the network output 
goes into a fixed loop, this 
is indicated by repeat bars 
in the music notation. 
(a) Melody 1, which the 
network is originally 

trained to produce with a 
plan of 1.0. (b) Extrapola- 
tion output using a plan of 
0.0. (c) Extrapolation out- 
put using a plan of 2.0. (d) 
Extrapolation output using 
a plan of 3.0. 
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similarity of common pitch movement patterns in 
different keys. 

Duration 

The duration of notes in the melodic sequences 
must also be represented. As with the pitch repre- 
sentation, two clear alternatives present them- 
selves. First, the duration could be specified in a 
separate pool of output (and context) units, along- 
side the pitch output units. The units could code 

for note duration in a localist fashion, with one 
unit designating a quarter-note, another a dotted 
eighth-note, etc. Or they could use a distributed 
representation, with for instance the number of 
units "on" (activation 1.0) representing the dura- 
tion of the current note in sixteenth-notes. With 
the localist representation, the corresponding con- 
text units would hold a memory of the lengths of 
notes played recently in the melody; in the dis- 
tributed case, the context units would be harder to 
analyze. 

Alternatively, duration can be removed from ex- 
plicit representation at the output units. Instead, 
the melody could be divided into equally spaced 
time slices of some fixed length, and each output in 
the sequence would correspond to the pitch during 
one time slice. Duration would then be captured by 
the number of successive outputs and hence the 
number of time slices a particular pitch stays on. 
This is equivalent to thinking of a melody as a 
function of pitch versus time (as in piano-roll nota- 
tion), with the network giving the pitch value of 
this function at equally spaced intervals of time. 
I am using this time-slice representation for dura- 
tion at present, in part because it simplifies the net- 
work's output-no separate note-duration units are 
needed. In addition, this representation allows the 
context units to capture potentially useful pitch- 
length information, as will be indicated below. The 
form of this representation can be seen in the ex- 
ample network output in Figs. 4-6. 

The specific fixed length of the time slices to use 
should be the greatest common factor of the dura- 
tions of all the notes in the melodies to be learned. 
This ensures that the duration of every note will be 
represented properly with a whole number of time 
slices. For example, if our network were only to 
learn the melody A-B-C with corresponding dura- 
tions quarter-note, eighth-note, and dotted quarter- 
note, we would use time slices of eighth-note dura- 
tion. The sequence the network would learn would 
then be {A, A, B, C, C, C}. 

With this duration representation, the context 
units now not only capture what pitches were used 
recently in the melody, but also for how long. This 
is because the longer a given note's duration is, the 
more time slices its pitch will appear at the output, 
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Extrapolation Interpolation

Original
melody

(plan 1.0)

New
melody

(plan 0.0)

New
melody

(plan 2.0)

Original
melodyA
(plan 0.0)

Original
melodyB
(plan 1.0)

New
melodyA-B
(plan 0.5)

Fig. 5. Network output 
using interpolation be- 
tween two melodies. 
(a) Melody 1, trained with 
plan 1.0. (b) Interpolation 
output using a plan of 0.8. 
(c) Interpolation output 
using a plan of 0.7. (d) In- 

(a) 

terpolation output using a 
plan of 0.5; an additional 
34 successive time-slices 
(68 total) are shown to 
indicate longer-term be- 
havior. (e) Interpolation 
output using a plan of 0.2. 
(f) Melody 2, trained with 
plan 0.0. 

Fig. 6. Network output 
using altered melody 
space. (a) Melody 3, 
trained using plan vector 
(0.0, 1.0). (b) Melody 4, 
trained using plan vector 
(1.0, 1.0). (c) Interpolation 
output between melodies 
1 and 2, incorporating 
training on 3 and 4, using 

plan vector (0.5, 0.0). (d) 
Interpolation output be- 
tween melodies 1 and 2, 
trained with 8 hidden 
units, using a plan of 0.5. 
(e) Interpolation output 
between melodies 1 and 2, 
retrained with 15 hidden 
units, using a plan of 0.5. 
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Todd’s Architecture Prospects/Addendum (1/2) [Todd, 1989]

• Structure

• Hierarchy

• Multiple Time/Clocks
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Todd’s Architecture Prospects/Addendum (2/2) [Todd, 1989]

• Precursor of

• Hierarchy
– Ex: MusicVAE [Roberts et al., 2018]

• Multiple Time/Clocks
– Ex: Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]

23

A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed
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Lewis’ Creation by Refinement (1/4) [Lewis, 1988]

• Training on 30 Manually Generated 5-Note Melodies
• 7 Possible Notes (from C to B, without alteration)
• Well Formed

– Possible Intervals:
» Unison, 3rd, 5th,
» Scale Degree Stepwise Motion

• Poorly Formed
– Excessive Motion or Excessive Repetition

• Binary Classification Training
– Well or Poorly Formed

24
Fig. 2. 

Ynrnplcs o f  ‘‘\I e11 formed” melodic figures used in training (left) 
and f iguwh generated by creation by refinement (right). 
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Ex. of Training Examples
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Lewis’ Network Architecture
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…
Input layer

5 * 7 =
35 nodes

1st Hidden layer
105 nodes

2nd Hidden layer
35 nodes

Output layer
1 node

C
D
E
F
G
A
B

Well formed ?
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Lewis’ Creation by Refinement (1/6)
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…

C
D
E
F
G
A
B

Well formed

Initial
Random Values
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Lewis’ Creation by Refinement (2/6)

27

…

C
D
E
F
G
A
B

Well formed

Values

Input Values are Incrementally Manipulated
Under the Control of a Gradient Descent on Error in Predicted Well Formed
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Lewis’ Creation by Refinement (3/6)

28
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Lewis’ Creation by Refinement (4/6)

Ex. of Melodies Created by Refinement

• The Network Learned Preference for Stepwise and Triadic Motion
Fig. 2. 

Ynrnplcs o f  ‘‘\I e11 formed” melodic figures used in training (left) 
and f iguwh generated by creation by refinement (right). 
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• Attention

• Hierarchy

Lewis’ Creation by Refinement (5/6)

Ex. of Melodies Created by Hierarchical Refinement
(ABCD -> ABxCD scheme)

30
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• Reinforcement

Lewis’ Creation by Refinement (6/6)

Not Reinforcement learning

Created Melodies which are Liked are Added to the Training Set

31
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Lewis’ Creation by Refinement Pioneering (1/3)

• Precursor of
• Gradient Descent Input Manipulation [Briot et al., 2017]
• Ex: DeepHear [Sun, 2016]

– Melody Consonant Accompaniment Creation

32

Input Bottleneck Layer

Similarity

Reference MelodyOutput

Input Manipulation

Generation

https://fephsun.github.io/2015/09/01/neural-music.html#

https://fephsun.github.io/2015/09/01/neural-music.html
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Lewis’ Creation by Refinement Pioneering (2/3)

• Precursor of

• Gradient Ascent Input Manipulation [Briot et al., 2017]

• Ex: DeepDream [Mordvintsev et al. 2015]
– Motif Detector Neuron Activation Maximization

33

Activation

Input Manipulation
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Lewis’ Creation by Refinement Pioneering (3/3)

34

Initial Image Deep Dream Image
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Structure Imposition (1/2) [Lattner et al., 2016]

35

• Constrained sampling, C-RBM [Lattner et al., 2016]

• Convolutional Restricted Boltzmann Machine (RBM)

• Combination of: 

– Input Manipulation guided by Gradient Descent of current sample

» to impose Higher-Level Structure/Constraints:

• Structure (Structure Repetition, Ex: AABA), via Self-Similarity Matrix

• Tonality, via Similarity of Distribution of Pitch-Classes

• Meter (Rhythm Pattern/Signature and Beat Accent)

– Sampling Control, by Selective Gibbs sampling (SGS)

» at a Selected Low-Level (subset of variables)

» to realign selectively the sample to the learnt distribution

– Alternate IP/GD and SGS, controlled by Simulated Annealing

– But not exact as, e.g., Markov Constraints [Pachet & Roy, 2011]
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Structure Imposition

36

– Structure (Repetition Structure, Ex: AABA)
» Self-Similarity Matrix
» For each Music Slice

– Tonality, via Similarity of Distribution of Pitch-Classes
» Key Estimation Vectors over Time

– Meter
» Duration and Accent Patterns (ex: on 1st and 3rd Beats)
» Via Relative Occurrence of Note Onsets

12 Minor Keys
12 Major Keys



Deep Learning – Music Generation – 2019Jean-Pierre Briot

C-RBM [Lattner et al., 2016]

37

https://soundcloud.com/pmgrbm

Input
manipulation

Sampling

Sample Structural Reference

Both Manipulation and Sampling of Input
because RBM’s "Output" is its Input

https://soundcloud.com/pmgrbm
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C-RBM Examples

• RNN-RBM Sample

• Unconstrained Sample

• Template Piece

• Constrained Sample

https://soundcloud.com/pmgrbm

38

https://soundcloud.com/pmgrbm
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Mozer’s Rich Representation Model [Mozer, 1994]

[Mozer, 2004]

Note/Harmony

Duration/Rhythm

39

Neural Network Music Composition 257 

Pitch Height Chroma Circle Circle of Fifths 

Figure 2. Shepard's (1982) pitch representation. 

scales-C, D, E, F, G, A and %are grouped together on the CF. The most 
common pentatonic keys are similarly localized. Second, and perhaps more critical, 
the C F  can explain the subjective equality of the intervals of the diatonic scale. To  
elaborate, Shepard points out that people tend to hear the successive steps of the 
major scale as equivalent, although with respect to log frequency, some of the 
intervals are only half as large as others. For example, in C major, the E-F and B-C 
steps are half tones apart (minor seconds) while all others are a whole tone apart 
(major seconds). The combination of the PH and the C F  permits a representation 
in which the distance between all major and minor seconds is the same. This is 
achieved by using a scale ratio of approximately 3: 1 for the C C  relative to the CF. 

One desirable property of the overall PHCCCF representation is that distances 
between pitches are invariant under transposition. Consider any two pitches, say, 
D2 and G#4. Transposing the pitches preserves the distance between them in the 
PHCCCF representation. Thus, the distance from D2 to W is the same as fkom 
E2 to AM, from D l  to G#3, and so forth. See Bharucha (1991) for a further 
discussion of the psychological issues involved in the representation of musical 
pitch. 

The relative importance of the PH, CC and C F  components can be varied by 
adjusting the diameters of the CC and the CF. For example, if the two circles have 
the same diameter, then, in terms of the CC and C F  components, the distance 
between C and G is the same as the distance between C and B. This is because B 
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Table 111. PHCCCF representation for selected pitches 

Pitch 

C 1 
i3 1 
G2 
C3 
M3 
E3 
A4 
C5 
Rest 

information about the octave; information about the pitch within an octave can be 
gleaned from the values on the other dimensions. Consequently, a precise response 
of the PH unit is not crucial. Its activity is scaled to range from -9.798 for C1 to 
+9.798 for C5. This scaling achieves the desired property previously described that 
the distance in the CC or C F  component between pitches on opposite sides of the 
circle equals the distance between pitches one octave apart in the PH component.' 

The PHCCCF representation consists of 13 units altogether. Sample activity 
patterns for some pitches are shown in Table 111. Rests (silence) are assigned a 
unique code, listed in the last row of the table, that is maximally different from all 
pitches. The end of a piece is coded by a series of rests. 

As with any distributed representation, there are limitations as to how many and 
which pitches can be represented simultaneously. The issue arises because the NND 
layer needs to be able to encode a set of alternatives, not just a single pitch. If, say, 
Al,  0 2  and E2 are equally likely as the next note, the NND layer must indicate all 
three possibilities. T o  do so, it must produce an activity vector that is nearer to PA,, 
p ~ z  and PEZ than to other possibilities. The point in PHCCCF space that is 
simultaneously closest to the three pitches is simply the average vector, (PA, + PDZ 

+ p~2)/3. Table IV shows the pitches nearest to the average vector. As hoped for, 
Al, D2 and E2 are the nearest three. This is not always the case, though. Table V 
shows the pitches nearest to the average vector which represents the set {Al, D2, 
D#2}. This illustrates the fact that certain clusters of pitches are more compact in 
the PHCCCF space than others. The PHCCCF representation not only introduces 
a similarity structure over the pitches, but also a limit on the combinations of pitches 

Table IV. Distance from representation of 
{Al,DZ,E2} to nearest 10 pitches 

Rank Pitch Distance 

D
ow

nl
oa

de
d 

by
 [N

ew
 Y

or
k 

U
ni

ve
rs

ity
] a

t 1
5:

55
 1

7 
O

ct
ob

er
 2

01
4 

Neural Network Music composition 26 1 

Figure 3. The characterization of note durations in terms of twelfths of a beat. The 
fractions shown correspond to the duration of a single note of a given type. 

result in similar representations for related durations. For example, eighth-notes 
and quarter-notes (the former half the duration of the latter) share the same value 
on the 114 beat circle; eighth-note triplets and quarter-note triplets share the same 
value on the 113 beat circle; and quarter-notes and half-notes share the same values 
on both the 114 and 113 beat circles. 

This five-dimensional space is encoded directly by five units in CONCERT. It 
was not necessary to map the 113 or 114 beat circle into a higher-dimensional binary 
space, as was done for the CC and the CF (Table II), because the beat circles are 
sparsely populated. Only two or three values need to be distinguished along the x 
and ydimensions of each circle, which is well within the capacity of a single unit. 

Several alternative approaches to rhythm representation are worthy of mention. 
A straightforward approach is to represent time implicitly by presenting each pitch 
on the input layer for a number of time steps proportional to the duration. Thus, 
a half-note might appear for 24 time steps, a quarter-note for 12, an eighth-note 
for 6. Todd (1989) followed an approach of this sort, although he did not quantize 
time so finely. He included an additional unit to indicate whether a pitch was 
articulated or tied to the previous pitch. This allowed for the distinction between, 
say, two successive quarter-notes of the same pitch and a single half-note. The 
drawback of this implicit representation of duration is that time must be sliced into 

Duration Height 113 Beat Circle 114 Beat Circle 

Figure 4. The duration representation used in CONCERT. 
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The Old Emperor New Clothes (Deep Networks/Learning)

40
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The Old Emperor New Clothes

41

• Multiple Hidden Layers Neural Network

• Platforms
• Tecnical Advances

– Pre-Training, Batch Normalization, Residual Learning…

• Fast CPUs
– GPUs

• Large Memory
• Available Data
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Power Increase

• Brute Force

• Hypervitamined Brute Force

Loss Minimization

GPUs

PyTorchTensorFlow
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But Not Only…

• Deep Architecture

– Multiple Levels of Abstractions

– End-to-End Architecture

• New Architectures

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3
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Why Deep ?

44

• More Complex Models
• Learns better Complex Functions
• Hierarchical Features/Abstractions
• No Need for Handcrafted Features

– (Automatically Extracted)

Distributed Representations

End-to-End Architecture
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The Groundbreaking Start of Deep Learning

45

Pre-Training [Hinton et al. 2006]
Layer-Wise Self-Supervised

Training/Initialization

ImageNet 2012 Image Recognition
Challenge Breakthrough
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WaveNet Audio End-to-End Generation [van den Oord et al., 2017]

• Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., 
Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., WaveNet: A 
Generative Model for Raw Audio, arXiv:1609.03499, December 2016.

• Waveform

• End to end architecture

46

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen†

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com
Google DeepMind, London, UK
† Google, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and logF0 values.

7

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

[van den Oord, 2016]
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New Architectures

• New Architectures and Mechanisms

• RNN Encoder Decoder

• Variational Autoencoders

• Generative Adversarial Networks

• Transformer

• Attention Mechanism
• …

[Bechberger, 2018]

[O’Reilly Media, 2018]

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

[Vaswani et al., 2017]

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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Phylogenetics
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Deep Learning Phylogenetics

Feedforward

Autoencoder (AE)

Recurrent (RNN)

Generative Adversarial Networks (GAN)

Long Short-Term Memory (LSTM)

Variational Autoencoder (VAE)

RNN Encoder Decoder

Creative Adversarial Networks (CAN)

Transformer

Reinforcement Learning

Convolutional

Deep Reinforcement Learning

RL-Tuner

Music VAE

Music Transformer

DeepHear

Restricted Boltzmann Machine (RBM) RNN-RBM

VRAE

C-RBM
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MidiNet

Performance RNN
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Deep Learning Phylogenetics

Generative Adversarial Networks (GAN)

Variational Autoencoder (VAE)

50

Generative Architectures
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Artificial Intelligence and Machine Learning

51
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Machine Learning and Artificial Intelligence

• Backfire (Irony) of History
• In 1960, Minsky and Papert founded AI (Artificial

Intelligence) based on Concepts, Symbols, Logic, 
Reasoning…, Against Cybernetics (Feedback) and 
Connexionism (Neural Networks)

• In 1969, they "Killed" Connexionism/Neural Networks
(Sound Critic of Perceptron)

• In 2006, Start of Deep Learning
• Now, AI is synonym of Deep Learning
• When Actually, Neural Networks are somehow based on 

Statistical (Correlation) Brute Force
52
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Terminology

Problem Solving

Reasoning

Search
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Human Machine Interaction

Adaptation
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Data Science

Learning

Discovery
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Artificial Intelligence

Machine Learning
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Terminology

Data Science

Reinforcement Learning

Neural Networks
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Terminology
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Terminology

Intelligence demonstrated by machines,
as opposed to natural intelligence

displayed by humans

Using experience or/and memory
to infer information or/and behavior

and to improve decision or/and action

Data Science

Extracting knowledge
and insights

from structured and
unstructured data

Machine Learning

Artificial Intelligence



Deep Learning – Music Generation – 2019Jean-Pierre Briot

Terminology
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Data Management
and Processing
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Terminology

Big Data

Linear Regression
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Search
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Correlation vs Causation

• Deep Learning Learns Correlations

• Does Function Mapping

• And Does it Very Well!

• It Creates a Predictive Model

• But not an Explicative Model

• Correlation => Causation

• Still Missing Step

[Pearl and Mackenzie, 2018]
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Ex. of Spurious Correlation (Confounding)

• Positive Correlation (for a country) between
– Chocolate Consumption

– Number of Nobel Prizes

• False Deduction/Causation:
– More Chocolate -> More Nobel Prizes

• Common Cause: Country Wealthiness

• Chocolate <- Wealthiness -> Nobel Prizes
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From Correlation to Causation

Causation Inference Engine [Pearl and Mackenzie, 2018]

The Book of Why: The New Science of Cause and Effect – Pearl and Mackenzie 

! 12!

weaknesses in their software, to function as moral entities, and to converse naturally with 

humans about their own choices and intentions. 

 

A Blueprint for Causal Inference 

 In our era, I am sure that many readers have heard terms like “knowledge,” 

“information,” “intelligence” and “data,” and some may feel confused about the differences 

between them or how they interact. Now I am proposing to throw another term, “causal model,” 

into the mix, and the reader may justifiably wonder if this will only add to the confusion. 

 It will not! In fact, it will anchor the elusive notions of science, knowledge and data in a 

concrete and meaningful setting, and we will elucidate how the three work together to produce 

answers to difficult scientific questions. In Figure 1, I have drawn a blueprint for a “causal 

inference engine” that might handle causal reasoning for a future artificial intelligence. It’s 

important to realize that this is not only a blueprint for the future; it is also a guide to how causal 

models work in scientific applications today and how they interact with data.  

 

Can the query
be answered?

Testable implications 4

Return to
boxes 2 and 3

6Estimand

answering the query)
(Recipe for

Estimate 9
(Answer to query)

 NO

YES

OutputsInputs "Inference Engine"Background

Query

Data 7

5

Statistical estimation 8

31 Assumptions Causal modelKnowledge 2

[Pearl and Mackenzie, 2018]
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Modes of Creation
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Handcrafted vs Learnt Models

• Handcrafted

– Tedious

– Error-Prone

• Automatically Learnt (Induction)

– Markov Models

– Neural Models

• Style Automatic Learned from a Corpus (Composer, Form, Genre…)

– Melody

– Harmony

– Counterpoint

– Orchestration

– Production

• Machine Learning Techniques

– Neural Networks, Deep Learning, Reinforcement Learning

– (and other models/techniques, Ex: Markov Models)

68
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Curation Configuration Selection

Artistic Content Generation Basic Cycle

• Curation
– Collecting Examples (Training Set)
– Extensional Definition of the Style

• Configuration
– of the (Selected) Learning Model/Architecture

• Selection
– Among Results Generated
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Reorchestration of Ode of Joy
by DeepBach (and other techniques [Flow Machines])
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Autonomous vs Assisted Music Creation

71

• Autonomous Generation/Interpretation
– Turing Test
– Symbolic or/and Audio Music Generation
– Parametrization/User Preferences (Style, Mood, etc.)
– For Commercials and Documentaries
– Create Royalty-free or Copyright-buyable Music
– Ex: 

• Assistance to Human Composers and Musicians
– Propose
– Refine
– Analyze
– Harmonize
– Produce
– Ex: FlowComposer [Pachet et al., 2014]
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Objective and Evaluation [Pachet, 2019]
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Current Systems

Autonomous
Generalization-based

Future Systems

Augmentation/Assistance
Creative-incentived

Objective Create music Create music not possible 
otherwise

Evaluation Please the listener Please the composer

Risk Conventional Surprising
But meaningful
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Some Preconcepts Against Deep Learning / AI

• No Emotion
– Create Emotion to the Human Target ?
– Or/And Internal Model of Emotion ?

• No Creativity
– Exploratory

» AlphaZero used successful strategies yet unconsidered
– Recombination

» Concept and Conjecture Discovery (ex: Numbers, Prime Numbers, 
Prime Numbers Decomposition) AM and Eurisko [Lenat, 1976; 1983]

» Style Transfer [Gatys et al., 2015]
– Paradigm Reformulation

» Ex: Quantum Physics, Algebraic Geometry, Dodecaphonism…
» More difficult

[Image: BBC]

[Bryson et al., 2004]

[Karras et al., 2018]

+ =
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Co-Creativity

• Co-Creation by Human(s)+Machine(s)
– Ex: FlowComposer [Pachet et al., 2014]

– Continuator [Pachet, 2002]

– Omax/DYCI2 [Assayag et al., 2003]
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Autonomous vs Assisted Music Creation

"On the one hand, we have François Pachet’s Flow 
Machines, loaded with software to produce sumptuous
original melodies, including a well-reviewed album. On 
the other, researchers at Google use artificial neural 
networks to produce music unaided. But at the moment 
their music tends to lose momentum after only a minute 
or so."

[Creativity and AI: The Next Step – Combining two
types of machine intelligence could open new frontiers
of art, Arthur I. Miller, Scientific American, October 1, 
2019]
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Open Issues

• Structure

– Ex: LSTM [Hochreiter & Schmidhuber, 1997]

– Clockwork RNN [Koutnik et al., 2014]

– SampleRNN [Mehri et al., 2017]

– MusicVAE [Roberts et al., 2018]

• Control

– Tonality Conformance

– Rhythm

– Ex: C-RBM [Lattner et al., 2016]

– Conditioning

– Arbitrary Constraints

• Creativity Incentive

– Vs Style Conformance

– Ex: CAN [Elgammal et al., 2017]

• Interactivity/Incrementality

– Ex: DeepBach [Hadjeres et al., 2017]

– Incremental Sampling

A Clockwork RNN

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to the sequence modeling and recognition
that are relevant to CW-RNN are introduced in this section.
The primary focus is on RNN extensions that deal with the
problem of bridging long time lags.

One model that is similar in spirit to our approach is the
NARX RNN1 (Lin et al., 1996). But instead of simplifying
the network, it introduces an additional sets of recurrent
connections with time lags of 2,3..k time steps. These ad-
ditional connections help to bridge long time lags, but in-
troduce many additional parameters that make NARX RNN
training more difficult and run k times slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in a linear unit called a constant error

carousel (CEC) indefinitely. The cell containing the CEC
has a set of multiplicative units (gates) connected to other
cells that regulate when new information enters the CEC
(input gate), when the activation of the CEC is output to the
rest of the network (output gate), and when the activation
decays or is ”forgotten” (forget gate). These networks have
been very successful recently in speech and handwriting
recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs into several layers (Fernandez et al., 2007;
Graves & Schmidhuber, 2009) aims for hierarchical se-
quence processing. Such a hierarchy, equipped with Connec-

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

tionist Temporal Classification (CTC; Graves et al., 2006),
performs simultaneous segmentation and recognition of se-
quences. Its deep variant currently holds the state-of-the-
art result in phoneme recognition on the TIMIT database
(Graves et al., 2013).

Temporal Transition Hierarchy (TTH; Ring, 1993) incre-
mentally adds high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but with proportionally growing network size. The
model was recently improved by adding recurrent connec-
tions (Ring, 2011) that prevent it from bloating by reusing
the high-level nodes through the recurrent connections.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only a bit in response to its inputs. This
technique was recently picked up by Echo State Networks
(ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a connection from each neuron to itself
that has a weight that decays exponentially in time. This
is implemented in a way that can be computed efficiently,
however, its performance is still inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via a optimal linear mapping, that is computed
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Style vs/and Control
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Style (Learnt) Control (Imposed)

[Flow Machines]
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Style vs/and Originality
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Style (learnt) Originality

[Mimi & Eunice]
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Conclusion
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Conclusion/Prospects

80

• Deep Learning-based Music Generation
• Successes and Limits/Prospects

• Objective Loss Function Hypothesis
• Conformance Pros and Cons
• Control
• Context
• Explication

• Markov Models (and other Models) still Interesting
• Symbolic AI (GOFAI) still Necessary
• Automated Generation vs Human-Machine Co-Creation
• New Usages
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Self-References for More Information
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Thank You – Questions
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